The aim of this paper is to investigate composition of fatty acids in sweat on purpose of latent fingerprint detectant developing and crime evidence searching. Fingerprint from 5 male donors (aged 29-50 years) were collected. We identified fatty acid components on sweat using methylester mixture (37species) as standard fatty acid and analyzed them by GC-FID. As donor was aged, the level of total fat was found to decrease markedly (aged 20-30 years: 56.4-72.0 %, aged 50 years : 32.4-45.4 %). We identifided 28 species fatty acid, primarilly C16:0(palmitic acid), C16:1 (palmitoleic acid), C18:1n9c(oleic acid), C18:0 (stearic acid), C14:0 (tetradecanoic acid) and all sweats were found to contain C12:0 (lauric acid), C15:0 (pentadecanoic acid), C18:2n6c (linoleic acid), C18:2n6t (linolelaidic acid), C20:0 (arachidic acid), C24:0/C20:5n3 (lignoceric acid/eicosapentaenoic acid), but with differing frequencies and at varying levels. C14:1 (myristoleic acid), C15:1 (pentadecenoic acid), C21:0 (heneicosanoic acid), C22:1n9 (erucic acid) were often observed in sample. Ratio of saturated and unsaturated fatty acid was from 0.94:1 to 2.6:1. And decrease of total fatty acids components caused by loss of saturated fatty acid and monounsaturated fatty acid. In case of sweat amino acids, we detected serine ($0-31.9{\mu}L/mL$), threonine ($0-26.2{\mu}L/mL$), glycine ($0-18.9{\mu}L/mL$) and 20-30 years old, highly protein intake ratio individuals increased (10 times) than 50 years old. We observed greatly individual characterization of amino acid compounds in sweat.
Flash drought (FD), characterized by the rapid onset and intensification, can significantly impact ecosystems and induce immediate water stress. A more comprehensive understanding of the causes and characteristics of FD events is required to enhance drought monitoring. Therefore, we investigated the FD events took place over the Korean peninsula using Global Land Data Assimilation System (GLDAS) data from 2012 to 2022. We first detected FD events using the stress-based method (Standardized Evaporative Stress Ratio, SESR), and analyzed the frequency and duration of FDs. The FD events were classified into three cases based on the variations in Actual Evapotranspiration (AET) and potential Evapotranspiration (PET), and spatially analyzed. Results revealed that there are regional disparities in frequency and duration of FDs, with a mean frequency of 6.4 and duration of 31 days. When classified into Case 1 (normal condition), Case 2 (AET-driven), and Case 3 (PET-driven), we found that Case 2 FDs emerged approximately 1.5 times more frequently than those driven by PET (Case 3) across the Korean peninsula. Case 2 FDs were found to be induced under water-limited conditions, and led both AET and PET to be decreased. Conversely, Case 3 FDs occurred under energy-limited conditions, with increase in both. Case 2 FDs predominantly affected the northwestern and central-southern agricultural regions, while Case 3 occurred in the eastern region, characterized by forested land cover. These findings offers insights into our understanding of FDs over the Korean peninsula, considering climate factors, land cover, and water availability.
Jinmin Lee;Taeheon Kim;Hanul Kim;Hongtak Lee;Youkyung Han
Korean Journal of Remote Sensing
/
v.39
no.6_1
/
pp.1283-1297
/
2023
Mid-wave infrared (MWIR) imagery, due to its ability to capture the temperature of land cover and objects, serves as a crucial data source in various fields including environmental monitoring and defense. The KOMPSAT-3A satellite acquires MWIR imagery with high spatial resolution compared to other satellites. However, the limited spatial resolution of MWIR imagery, in comparison to electro-optical (EO) imagery, constrains the optimal utilization of the KOMPSAT-3A data. This study aims to create a highly visible MWIR fusion image by leveraging the edge information from the KOMPSAT-3A panchromatic (PAN) image. Preprocessing is implemented to mitigate the relative geometric errors between the PAN and MWIR images. Subsequently, we employ a pre-trained pixel difference network (PiDiNet), a deep learning-based edge information extraction technique, to extract the boundaries of objects from the preprocessed PAN images. The MWIR fusion imagery is then generated by emphasizing the brightness value corresponding to the edge information of the PAN image. To evaluate the proposed method, the MWIR fusion images were generated in three different sites. As a result, the boundaries of terrain and objects in the MWIR fusion images were emphasized to provide detailed thermal information of the interest area. Especially, the MWIR fusion image provided the thermal information of objects such as airplanes and ships which are hard to detect in the original MWIR images. This study demonstrated that the proposed method could generate a single image that combines visible details from an EO image and thermal information from an MWIR image, which contributes to increasing the usage of MWIR imagery.
Atmospheric aerosols not only have adverse effects on human health but also exert direct and indirect impacts on the climate system. Consequently, it is imperative to comprehend the characteristics and spatiotemporal distribution of aerosols. Numerous research endeavors have been undertaken to monitor aerosols, predominantly through the retrieval of aerosol optical depth (AOD) via satellite-based observations. Nonetheless, this approach primarily relies on a look-up table-based inversion algorithm, characterized by computationally intensive operations and associated uncertainties. In this study, a novel high-resolution AOD direct retrieval algorithm, leveraging machine learning, was developed using top-of-atmosphere reflectance data derived from the Geostationary Ocean Color Imager-II (GOCI-II), in conjunction with their differences from the past 30-day minimum reflectance, and meteorological variables from numerical models. The Light Gradient Boosting Machine (LGBM) technique was harnessed, and the resultant estimates underwent rigorous validation encompassing random, temporal, and spatial N-fold cross-validation (CV) using ground-based observation data from Aerosol Robotic Network (AERONET) AOD. The three CV results consistently demonstrated robust performance, yielding R2=0.70-0.80, RMSE=0.08-0.09, and within the expected error (EE) of 75.2-85.1%. The Shapley Additive exPlanations(SHAP) analysis confirmed the substantial influence of reflectance-related variables on AOD estimation. A comprehensive examination of the spatiotemporal distribution of AOD in Seoul and Ulsan revealed that the developed LGBM model yielded results that are in close concordance with AERONET AOD over time, thereby confirming its suitability for AOD retrieval at high spatiotemporal resolution (i.e., hourly, 250 m). Furthermore, upon comparing data coverage, it was ascertained that the LGBM model enhanced data retrieval frequency by approximately 8.8% in comparison to the GOCI-II L2 AOD products, ameliorating issues associated with excessive masking over very illuminated surfaces that are often encountered in physics-based AOD retrieval processes.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.17
no.5
/
pp.1-16
/
2022
Although start-up is a key national strategy to increase national competitiveness and create employment, the survival rate of start-ups has not improved significantly. This is an important reason for the inability to provide timely and appropriate support to startups, which are in the early stages of start-up, due to the unique limitations of existing start-up support institutions and investors. The relatively recent accelerator is attracting attention as a subject of solving the above problems through professional incubation and investment. However, there are only a few empirical studies on investment determinants that affect the survival and success of accelerators, and there is a lack of theoretical evidence. Accordingly, in previous studies, 12 investment determinants were derived from a static, strategic, and dynamic perspective as accelerator investment determinants based on a business model innovation framework. This study subdivided the accelerator investment determinants derived through previous studies into 21 and analyzed the importance and priority of each factor using AHP (Analytic Hierarchy Process) analysis technique for domestic accelerator investment experts. As a result of the analysis, the top factors of importance of accelerator investment determinants were in the order of 'human resources', 'customer and market', 'intellectual resources', and 'entrepreneur's ability to realize opportunities'. It can be seen that the accelerator considers the core competencies of startups to implement solutions as the most important factor when making startup investment decisions. It was also confirmed that accelerators are strategic to create a clear value proposition and differentiated market position based on the core competitiveness of startups, and that the core value delivery method prefers a market-oriented business model and recognizes entrepreneurs's innovation capability is an important factor to realize a business model with limited resources in a rapidly changing market. This study is of academic significance in that it analyzes the importance and priority of accelerator investment determinants through demonstration as a follow-up study on accelerator investment determinants derived based on business model innovation theory that reflects the nature, goals, and major activities of accelerator investment. In addition, it is of practical value as it contributes to revitalizing the domestic startup investment ecosystem by providing accelerators with theoretical grounds for investment decisions and specific information on detailed investment determinants.
One of the most important decisions for managers in the online banner advertising industry, is to choose the best banner alternative for exposure to customers. Since it is difficult to know the click probability of each banner alternative in advance, managers must experiment with multiple alternatives, estimate the click probability of each alternative based on customer clicks, and find the optimal alternative. In this reinforcement learning process, the main decision problem is to find the optimal balance between the level of exploitation strategy that utilizes the accumulated estimated click probability information and exploration strategy that tries new alternatives to find potentially better options. In this study we analyze the impact of word-of-mouth effects and the number of alternatives on the optimal exploration-exploitation strategies. More specifically, we focus on the word-of-mouth effect, where the click-through rate of the banner increases as customers promote the related product to those around them after clicking the exposed banner, and add it to the overall reinforcement learning process. We analyze our problem by employing the Multi-Armed Bandit model, and the analysis results show that the larger the word-of-mouth effect and the fewer the number of banner alternatives, the higher the optimal exploration level of advertising reinforcement learning. We find that as the probability of customers clicking on the banner increases due to the word-of-mouth effect, the value of the previously accumulated estimated click-through rate knowledge decreases, and therefore the value of exploring new alternatives increases. Additionally, when the number of advertising alternatives is small, a larger increase in the optimal exploration level was observed as the magnitude of the word-of-mouth effect increased. This study provides meaningful academic and managerial implications at a time when online word-of-mouth and its impact on society and business is becoming more important.
Da Sol Kim;Kang Mi Kim;Koanhoi Kim;Young Chul Park
Journal of Life Science
/
v.34
no.4
/
pp.271-278
/
2024
Redox factor (Ref)-1, a ubiquitously expressed protein, acts as a modulator of redox-sensitive tran- scription factors and as an endonuclease in the repair pathway of damaged DNA. However, the function of Ref-1 in the differentiation of monocytes into macrophages has not been defined. In this study, we investigated the effects of Ref-1 on the monocyte differentiation process using the human monocytic cell line THP-1. The differentiation agent PMA increased cell adhesion over time and showed a sig- nificant increase in phagocytic function but decreased the intracellular amount of Ref-1. Ref-1 inhibitor E3330 and Ref-1 knockdown using the siRNA technique reduced cell adhesion and the expression of differentiation markers, such as CD14, ICAM-1, and CD11b, by PMA stimulation. This means that the role of Ref-1 is absolutely necessary in the initial process of differentiating THP-1 cells stimulated by PMA. Next, the distribution of Ref-1 was examined in the cytoplasm and nucleus of THP-1 cells stimulated with PMA. Surprisingly, PMA stimulation resulted in the rapid translocation of Ref-1 to the nucleus. To prove that movement of Ref-1 to the nucleus is required for monocyte differentiation, a Ref-1 vector with the nuclear localization sequence (NLS) deleted was used. As a result, overexpression of ∆NLS Ref-1, which restricted movement to the nucleus, suppressed the expression of differentiation markers and notably reduced phagocytic function in PMA-stimulated THP-1 cells. In conclusion, these data suggest that the differentiation of monocytic THP-1 cells requires Ref-1 nuclear translocation during the initial process of biochemical events following stimulation from PMA.
Yeong-Hak Jo;Se-Jong Yoo;Seok-Hwan Bae;Jong-Ryul Seon;Seong-Ho Kim;Won-Jeong Lee
Journal of the Korean Society of Radiology
/
v.18
no.1
/
pp.45-52
/
2024
In this study, an AI-based algorithm was developed to prevent image quality deterioration and reading errors due to patient movement in PET/CT examinations that use radioisotopes in medical institutions to test cancer and other diseases. Using the Mothion Free software developed using, we checked the degree of correction of movement due to breathing, evaluated its usefulness, and conducted a study for clinical application. The experimental method was to use an RPM Phantom to inject the radioisotope 18F-FDG into a vacuum vial and a sphere of a NEMA IEC body Phantom of different sizes, and to produce images by directing the movement of the radioisotope into a moving lesion during respiration. The vacuum vial had different degrees of movement at different positions, and the spheres of the NEMA IEC body Phantom of different sizes produced different sizes of lesions. Through the acquired images, the lesion volume, maximum SUV, and average SUV were each measured to quantitatively evaluate the degree of motion correction by Motion Free. The average SUV of vacuum vial A, with a large degree of movement, was reduced by 23.36 %, and the error rate of vacuum vial B, with a small degree of movement, was reduced by 29.3 %. The average SUV error rate at the sphere 37mm and 22mm of the NEMA IEC body Phantom was reduced by 29.3 % and 26.51 %, respectively. The average error rate of the four measurements from which the error rate was calculated decreased by 30.03 %, indicating a more accurate average SUV value. In this study, only two-dimensional movements could be produced, so in order to obtain more accurate data, a Phantom that can embody the actual breathing movement of the human body was used, and if the diversity of the range of movement was configured, a more accurate evaluation of usability could be made.
Journal of the Computational Structural Engineering Institute of Korea
/
v.37
no.1
/
pp.67-76
/
2024
In this paper, we present a DIP-MLS testing method that combines digital image processing with a rigid body-based MLS differencing approach to measure mechanical variables and analyze the impact of target location and image resolution. This method assesses the displacement of the target attached to the sample through digital image processing and allocates this displacement to the node displacement of the MLS differencing method, which solely employs nodes to calculate mechanical variables such as stress and strain of the studied object. We propose an effective method to measure the displacement of the target's center of gravity using digital image processing. The calculation of mechanical variables through the MLS differencing method, incorporating image-based target displacement, facilitates easy computation of mechanical variables at arbitrary positions without constraints from meshes or grids. This is achieved by acquiring the accurate displacement history of the test specimen and utilizing the displacement of tracking points with low rigidity. The developed testing method was validated by comparing the measurement results of the sensor with those of the DIP-MLS testing method in a three-point bending test of a rubber beam. Additionally, numerical analysis results simulated only by the MLS differencing method were compared, confirming that the developed method accurately reproduces the actual test and shows good agreement with numerical analysis results before significant deformation. Furthermore, we analyzed the effects of boundary points by applying 46 tracking points, including corner points, to the DIP-MLS testing method. This was compared with using only the internal points of the target, determining the optimal image resolution for this testing method. Through this, we demonstrated that the developed method efficiently addresses the limitations of direct experiments or existing mesh-based simulations. It also suggests that digitalization of the experimental-simulation process is achievable to a considerable extent.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.19
no.2
/
pp.109-124
/
2024
The value of platform companies is rapidly increasing, exerting significant influence across industries. Identifying and fostering promising platform companies is crucial for enhancing national competitiveness. Consequently, tailored evaluation standards are necessary for such companies. This study derived investment decision factors specific to platform companies and compared the importance of each factor using Analytic Hierarchy Process (AHP) analysis. Key factors included platform characteristics, finance, entrepreneur (team), market, and product/service attributes. The findings revealed that platform characteristics were deemed the most crucial factor for investors. Specifically, factors such as platform size, ease of value fixation, core participant group, and data value were identified as pertinent for evaluating platform companies. Moreover, analysis distinguished between investors with prior platform investment experience and those without. Significantly, investors with platform investment experience placed greater emphasis on the value of data secured by platform Furthermore, it was observed that investors prioritized future value and growth potential over current value when investing in platform. Notably, founder/team characteristics, typically highly regarded in previous studies, ranked lower in importance in this study, highlighting a shift in focus. The discrepancy between this study's results and prior research on investment decision factors is attributed to the specificity of the questions posed. By focusing on investment decision factors for platform startups rather than generic startup inquiries, investor responses aligned more closely with platform-focused considerations. Given the burgeoning venture investment landscape, there's a growing need for detailed research on startups within specific sectors like IT, travel, and biotech. This approach can replace extensive research covering all startup types to identify investment decision factors suited to the characteristics of each individual industry.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.