• Title/Summary/Keyword: 기름 누유

Search Result 12, Processing Time 0.021 seconds

An Effective Numerical Method for the Prediction of Oil Spreading (누유확산 및 이동의 추정을 위한 효율적인 수치기법)

  • Song, J.U.;Rho, J.H.;Yoon, B.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.113-118
    • /
    • 1997
  • A simulation model and its numerical algorithm for the prediction of time-varying oil pollution region are proposed. Not only forces inducing molecular diffusion of oil but also oil advection due to the ocean surface current are considered in the present unified model Furthermore, an automatic modulation of computational grid is introduced to achieve more practical and effective numerical scheme. Applying the present method to some assumed oil spill cases, quite realistic oil maps are thought to be obtained.

  • PDF

자연순환식 유회수선 개발에 관한 연구

  • 이귀주;김경화
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2002.10a
    • /
    • pp.162-163
    • /
    • 2002
  • 기름의 하역 및 선적작업이 이루어지는 유조선의 입ㆍ출항이 빈번한 정유시설 인접항은 누유사고의 위험성이 매우 크므로 사고에 대비한 효과적인 방제장비의 확보가 절실히 요구된다. 또한 이러한 유출사고는 어민의 경제활동에 영향을 미치어 그들의 생계를 위협할 수 있으므로 유출기름은 신속하게 방제되어야 한다. (중략)

  • PDF

Modelling of Oil Boom Failure using the Fluent (Fluent를 이용한 오일 붐 누유 모델링)

  • Bae, Suk-Han;Jung, Yun-Chul
    • Journal of Navigation and Port Research
    • /
    • v.27 no.2
    • /
    • pp.239-246
    • /
    • 2003
  • When oil is spilled at sea, the oil boom is commonly used to tackle the movement and spreading of oil in an early stage of oil spill combat. But the retaining capability of oil boom is affected by various factors, such as water velocity, viscosity and density of oil, water depth, oil volume and the length of boom draft. In this study, a computer modelling was peformed to investigate how these factors influence the oil retaining process. The Fluent, most popular one of many CFD(computational fluid dynamics) programs is chosen for modelling and modelling results were verified using the empirical data. It is expected that results of this study will be useful data for oil boom designer and oil spill response commander.

Modelling of Oil Boom Failure using the Fluent (Fluent를 이용한 오일 붐 누유 모델링)

  • 배석한;정연철
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.171-178
    • /
    • 2003
  • When oil is spilled at sea, the oil boom is commonly used to tackle the movement and spreading of oil in an early stage of oil spill combat. But, the retaining capability of oil boom is affected by various factors, such as water velocity, viscosity, and density of oil, water depth, oil volume and the length of boom draft. In this study, computer modeling was peformed to investigate how these factors influence the oil retaining process. The Fluent, most popular one of many CFD(computational fluid dynamics) programs is chosen for modelling and modelling results were verified using the empirical data. It is expected that results of this study will be useful data for oil boom designer and oil spill response commander.

  • PDF

Containment Failures of Oil Restricted by Vertical Plates in Current (유벽에 갇힌 기름층의 조류중 손실에 관한 연구)

  • Song Museok;Hyun Beom-Soo;Suh Jung-Chun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.40-51
    • /
    • 1998
  • The interaction of contained oil slicks with current was investigated with a two-dimensional experimental setup in the circulating water channel facility. A vertical plate was used to contain the oils against the currents and the evolution of the oil slick, mainly focusing on the water/oil interface, was examined with an aid of a laser sheet. Two different oils - soy bean oil and diesel oil - were studied with varying the current speed (10 cm/sec to 35 cm/sec), the barrier depth (4 cm and 8 cm) and the volume of oil (2 liter to 12 liter). Different types of the interface behavior were observed according to the conditions and their mechanism was discussed based basically on the dimensional analysis. The critical speeds of two types of oil loss mechanism (entrainment failure and drainage failure) were also examined.

  • PDF

A Numerical Model for the Movement of Spilled Oil at Ocean (해상누유 확산의 수치해석)

  • Dong-Y. Lee;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.94-101
    • /
    • 1994
  • This paper describes a short-term prediction model for the movement of an oil slick in shallow waters. Under the assumption that the initial movement of the oil slick is governed by spreading and advection, the model has been developed and applied to Kyungki-Bay near Incheon Harbor. The initial spreading is estimated by using an empirical formula. The depth-averaged momentum equations are solved numerically for the volume transport velocities, in which the $M_2$ tide is the main driving source. A staggered grid system is adopted fur spatial discretization and the half-time method is implemented for time marching. The numerical result is visualized with the help of animation and thus the contaminated area is displayed on a monitor in time sequence. The input data are the time, the location and the volume of spill accident as well as environmental data such as md and $M_2$ tide.

  • PDF

An Experimental Investigation of the Underwater Oil Drop Formation (수중으로 방출되는 유류의 유적화에 관한 실험연구)

  • Song Museok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.1
    • /
    • pp.3-10
    • /
    • 2003
  • Oil drop formation during the underwater oil discharge is investigated experimentally. The focus is placed on the size of the drops formed with the variation of discharge speed and nozzle diameter. As the Reynolds number based on the nozzle diameter increases, the droplet size decreases first and then increases until an explosive atomization occurs. The length of the jet attached to the nozzle Increases with the Reynolds number and then decreases. The transition occurs when the flow becomes asymmetry.

  • PDF

Prediction Model and Numerical Simulation of the Initial Diffusion of Spilled Oil on the Sea Surface (해상누유의 초기확산 예측모델 및 수치추정)

  • Yoon, B.S.;Song, J.U.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.104-110
    • /
    • 1997
  • Increase of marine transpotation in coastal area frequently yields oil spill accidents due to collision or grounding of oil tankers, which affects great deal of damages on ocean environments. Exact prediction of oil pollution area in time domain, which is called oil map, is very important for effective and efficient oil recovery and minimization of environmental damage. The prediction is carried out by considering the two distinct processes which are initial diffusion on the still water surface and advection due to tide, wind wave induced surface currents. In the present paper, only the initial diffusion is dealt with. Somewhat new simulation model and its numerical scheme are proposed to predict it. Simple diffusion experiment is also carried out to check the validity of the present method. Furthermore, some example simulations are performed for virtual oil spill accident. Quite realistic oil map including oil thickness distributions can be obtained by the present model.

  • PDF

Failure Characteristics of Oil Boom Considering the Nonlinear Interaction of Oil Boom with Waves (Oil boom과 파랑의 비선형상호작용을 고려한 Oil Boom의 누유특성)

  • Cho, Yong-Jun;Yoon, Dae-Kyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.193-204
    • /
    • 2011
  • To develop more robust oil boom which is vulnerable to various failure mode under severe weather condition, highly accurate wave model is developed using Spatially filtered Navier-Stokes Eq., LDS (Lagrangian Dynamic Smagorinsky model) for residual stresses, SPH (Smoothed Particle Hydrodynamics). To clarify the hydraulic characteristics of floating type oil boom, we numerically simulate the behavior of oil spill around oil boom under very energetic progressive waves. At the first stage, we firmly anchored the oil boom, and then, allowed the excursion of the oil boom. It turns out that oil boom with skirt of enough length (longer than 30% of depth) effectively confines the oil spill even against very energetic waves. We can also observe obliquely descending vertical eddies between y = 1~2 m as horizontal vortices shedding at the interface of oil spill and water are diffused toward the bottom, which is believed to be the birth, growing and break-down of Kelvin-Helmholz wave.

Friction Characteristics of Oil-impregnated Sintered-Metal Bearing (유체동압 함유소결베어링의 마찰특성)

  • Jung, Gwang-Sub;Kim, Byung-Joo;Jung, Dae-Hyun;Park, Wang-Sik;Lee, Ho;Lee, Young-Je
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.62-68
    • /
    • 1997
  • 현재 널리 보급되어 있는 볼베어링은 몇개의 볼에 의해 작동하기에 회전이 불균일하며 진동과 소음이 크다. 이는 고속에서 한계를 갖는 주된 원인이 되고 있다. 또한 그리스의 손실로 인한 수명의 단축이나, 유출된 그리스로 인한 손상은 제품의 내구성에 치명적인 결과를 초래한다. 더욱이 기존에 사용하는 소형 정밀 베어링은 전량 수입에 의존하고 있으며, 기술 선진국의 기술이전 회피로 개발이 어려우며, 수입물량도 확보하기 어려운 상황이다. 이를 극복하기 위한 하나의 방법이 볼과 그리스를 대신해서 유체의 압력을 이용한 유체동압베어링의 개발이다. 유체동압을 이용한 베어링의 장점은 그리스의 누유가 없고, 이로 인한 설계상의 제약이 없으며, 볼베어링으로는 불가능한 고속회전에 적합하고, 안전성이 뛰어나며 회전이 균일하여 제품의 신뢰성을 향상시킬 수 있다. 유체동압 함유소결함유베어링은 진동과 소음이 적고, 저렴하며 구조가 간단하고, 급유기를 필요로 하지 않는 자기윤활(self-lubrication)특성과 생산성 등 많은 장점을 가지고 그 사용범위가 점차 광범위하게 넓어지고 있지만, 저속상태에서의 유막형성, 고속상태에서 기름의 누유, 고하중상태에서 강도와 기공의 눌어붙음과 출발과 정지 시에 발생하는 두 금속간의 직접 접촉을 피할 수 없는 것과 같은 해결해야 하는 문제를 가지고 있다. 본 연구에서는 이러한 단점을 해결하기 위하여 유체동압 함유소결베어링이 마찰특성을 알아보고자 한다.

  • PDF