• Title/Summary/Keyword: 기둥매입형

Search Result 19, Processing Time 0.027 seconds

Bond Strength between Concrete and Steel and Shear Behavior of Shear Connectors of H-shaped Steel Encased Composite Columns (H형강 매입형 합성기둥의 부착강도 및 전단연결재의 전단거동)

  • Wang, Ning;Lee, Hye Lim;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.377-387
    • /
    • 2017
  • The objective of this study is to investigate the influence that how does contact surface between concrete and steel influence the steel encased composite column by push-out test. Also nominal bond stress indicated by design standard such as Eurocode 4 is underestimated in small scale steel encased composite column. The other objective of this study is to investigate how does the number and space of shear connector influence the H-shaped steel encased composite column. The shear behavior of shear connectors is investigated by push-out test.

Eccentric Axial Loading Test for Concrete-Encased L-section Columns using 800MPa Steel and 100MPa Concrete (800MPa 강재 및 100MPa 콘크리트를 적용한 ㄱ형 강재 매입형 합성기둥의 편심압축실험)

  • Kim, Chang-Su;Park, Hong Gun;Lee, Ho Jun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.209-222
    • /
    • 2013
  • Eccentric axial loading test was performed for concrete-encased columns using 800MPa steel and 100MPa concrete. To maximize the contribution of the high-strength steel, L-shaped steel sections were placed at four corners, and connected to each other by lattices, links, or battens. Compared to a H-section of the same area, the moment-arm and strain of the L-sections are increased. Also, the corner L-sections provide good lateral confinement to concrete core. The test results showed that the peak strength and effective flexural stiffness of the L-section columns were increased by more than 1.4 times those of the H-section column.

The Evaluation of the Axial Strength of Composite Column with HSA800 Grade Steel (HSA800 강재를 적용한 합성기둥의 축방향 내력 평가)

  • Lee, Myung Jae;Kim, Cheol Hwan;Kim, Hee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.473-483
    • /
    • 2014
  • According to the Korean Building Code (KBC), the validity of the application of 800MPa grade steel(HSA800) to composite column should be verified by experimental or analytical method. Thus, stub column tests for encased and filled composite members with HSA800 steel were conducted, and axial strength and the validity of design compressive strength equations in KBC were evaluated. The test results show that the equation of the compressive strength of encased composite column member in KBC should be modified in order to use HSA800 steel without any reduction of specified minimum yield strength. For this purpose, it is suggested that the interval of hoop should be narrowed and the effective concrete area should be used. The equation of the compressive strength of filled composite column member in KBC is applicable to filled composite column with HSA800 steel without any modification.

Experiments on the Composite Action of Steel Encased Composite Column (강재 매입형 합성기둥의 합성작용에 관한 실험)

  • Min Jin;Jung In-Keun;Shim Chang-Su;Chung Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.393-400
    • /
    • 2005
  • Steel encased composite columns have been used for buildings and piers of bridges. Since the column section for the pier is relatively larger than that of building columns, economical steel ratio needs to be investigated for the required performance. Composite action between concrete and embedded steel sections can be obtained by bond and friction. However, the behavior of the column depends on the load introduction mechanism. Compression can be applied to concrete section, steel section and composite section. In this paper, experiments on shear strength of the steel encased composite column were performed to study the effect of confinement by transverse reinforcements, mechanical interlock by holes, and shear connectors. Bond strength obtained from the tests showed considerably higher value than the design value. Confinement, mechanical interlock and stud connectors Increased the shear strength and these values can be used effectively to obtain composite action of Steel Reinforced Concrete(SRC) columns.

Test Result on Embedded Steel Column-to-Foundation Connection for Modular Unit Structural System (유닛 모듈러 기둥 매입형 기초 접합부에 대한 실험 연구)

  • Lee, Sang Sup;Bae, Kyu Woong;Park, Keum Sung;Hong, Sung Yub
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.537-547
    • /
    • 2014
  • A steel modular unit structural system has been used increasingly for mid and high-rise buildings, since the building can be easily constructed by assembling the pre-made modular unit structures. For this structural system, each modular unit structures have to be properly connected to the foundation to transfer the axial force and the bending moment that are generated from external load to the ground. In this study, a new type of the embedded steel column-to-foundation connection was proposed, and its flexural behavior was evaluated through a series of experimental study. Five full scale specimens for the proposed connections were constructed and tested. The effect of the main parameters that affect the flexural behavior of the proposed connection, such as embedment length and shape of end plate, were studied. From the results, it was found that the flexural stiffness of the proposed connection was higher than that of the semi-rigid connection for all test specimens, and 200 mm of embedment length was proper for the given test specimens in this study.

An Analytical Study on Encased Steel Composite Columns Fire Resistance According to Axial Force Ratio (화재시 축력비에 따른 매입형 합성기둥의 내화성능에 대한 해석적 연구)

  • Kim, Ye-Som;Choi, Byong-Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.97-107
    • /
    • 2020
  • In this study, finite element analysis was carried out through the finite element analysis program (ANSYS) to investigate the fire resistance of composite columns in fire. Transient heat transfer analysis and static structural analysis were performed according to ASTM E 119 heating curve and axial force ratio 0.7, 0.6, 0.5 by applying stress-strain curves according to temperature, and loading heating experiments were carried out under the same conditions. In addition, the nominal compressive strength of the composite column according to the heating time according to the standard(Eurocode 4) was calculated and expressed as the axial force ratio and compared with the analytical and experimental values. Through the analysis, As a result of finite element analysis, the fire resistance time was 180 minutes and similar value to the experimental value was obtained, whereas the fire resistance time 150 minutes and 60 minutes were derived from the axial force ratios 0.6 and 0.7. In addition, it was confirmed that the fire resistance time according to the axial force ratio calculated according to the reference equation (Eurocode 4) was lower than the actual experimental value. However, it was confirmed that the standard(Eurocode 4) was higher than the experimental value at the axial force ratio of 0.7. Accordingly, it is possible to confirm the fire resistance characteristics(time-axial force ratio relationship) of the SRC column at high axial force, and to use the experimental and anaylsis data of the SRC column as the data for verification based on Eurocode.

The Specified Minimum Yield Stress of SM570TMC in Composite Columns (SM570TMC강의 매입형 합성기둥 적용시 설계기준 항복강도에 관한 연구)

  • Lee, Myung Jae;Oh, Young Suk;Lee, Eun Teak
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.195-203
    • /
    • 2008
  • This paper aims to evaluate the yield stress of SM570TMC concrete-filed H-shape steel columns subjected to axial force. These columns were evaluated and compared using quasi-static tests. The displacements and the axial loads column specimens were measured during the tests, and test results showed that the yield stress of concrete-filed H-shape steel columns subjected to axial load could be predicted using the previously proposed yield stress of steel columns.

Seismic Performance of Column-Footing Connection of Modular Pier using CFT (CFT를 이용한 모듈러 교각 기둥-기초 연결부의 내진성능)

  • Kim, Ji Young;Kim, Ki Doo;Ma, Hyang Wook;Chung, Chul-Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.73-85
    • /
    • 2014
  • The CFT (Concrete Filled steel Tubes) column-footing connection is cast-in-place embedded type which provides simple construction procedure, low cost, and superior structural performance. In this study, CFT column-footing connection of modular pier is proposed and structural performance is evaluated by experimental tests. To evaluate structural performance of the CFT column-footing connection, a series of experimental tests were performed for the 4 specimens with different embedded depth. As a result of the quasi-static test, the specimen with 0.6D (0.6 times the outside diameter of steel tube) embedded depth showed relatively low ductility than other specimens with larger embedded depth due to cone failure of base concrete occurred during the lower loading step. On the contrary, cone failure of the base concrete was not observed in the specimens with larger embedded depth than 0.9D, but typical flexural failure in lower part of CFT column was observed. With the analyses of force-displacement curve, displacement ductility, and energy dissipation capacity, it is concluded that the rational range of embedded depth of the CFT column-footing connection is from 0.9D to 1.2D in view of good seismic performance.

Optimization of encased composite columns considering $CO_2$ emission ($CO_2$ 배출량을 고려한 매입형 합성기둥의 최적설계)

  • Jeon, Ji-Hye;Choi, Se-Woon;Park, Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.706-709
    • /
    • 2011
  • 최근 환경오염 문제에 대한 관심이 고조되며 건설분야를 비롯한 각 산업분야에서는 $CO_2$저감 대책에 대한 연구가 활발히 진행되어 왔다. 건설분야에서의 기존 연구는 대부분 시공 후 사용 및 유지관리 단계에 집중되어 있으며, 설계단계에서 구조재료 및 비구조 재료의 적절한 사용에 관련한 연구는 초기단계이다. 그러므로 본 연구에서는 초고층건물 구조설계에서 사용되는 매입형 합성기둥 부재의 구조비용과 $CO_2$발생량을 동시에 최소화할 수 있는 다목적 최적설계기법을 제안하였다. 알고리즘의 검증을 위해 35층 건물의 기둥 설계에 적용하였으며, 적용결과 초기설계안보다 경제적이며 친환경적인 최적 설계안을 제시할 수 있음을 확인하였다.

  • PDF

Improvement and Evaluation of Seismic Performance of Reinforced Concrete Exterior Beam-Column Joints Retrofitting with Fiber Reinforced Polymer Sheets and Embedded CFRP Rods (섬유시트와 매입형 CFRP Rod를 보강한 R/C 외부 보-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Ha, Young-Joo;Kang, Hyun-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.151-159
    • /
    • 2015
  • In this study, experimental research was carried out to evaluate and improve the seismic performance of reinforced concrete beam-column joint regions using strengthening materials (CFRP sheet, AFRP sheet, embedded CFRP rod) in existing reinforced concrete structure. Therefore it was constructed and tested seven specimens retrofitting the beam-column joint regions using such retrofitting materials. Specimens, designed by retrofitting the beam-column joint regions of existing reinforced concrete structure, were showed the stable failure mode and increase of load-carrying capacity due to the effect of crack control at the times of initial loading and confinement of retrofitting materials during testing. Specimens LBCJ-CRUS, designed by the retrofitting of CFRP Rod and CFRP Sheet in reinforecd beam-column joint regions were increased its maximum load carrying capacity by 1.54 times and its energy dissipation capacity by 2.36 times in comparison with standard specimen LBCJ for a displacement ductility of 4 and 7. And Specimens LBCJ-CS, LBCJ-AF series were increased its energy dissipation capacity each by 2.04~2.34, 1.63~3.02 times in comparison with standard specimen LBCJ for a displacement ductility of 7.