정부에서는 공동주택 노후화 문제에 대응하여 공동주택 리모델링 활성화를 위한 법과 제도를 꾸준히 개정 발전시켜왔다. 그러나 이러한 노력에도 불구하고 아직까지 세대수증가형 리모델링은 활성화되지 못하고 있다. 그 이유로 다양한 문제점이 있지만, 본 연구에서는 리모델링 사업 초기단계에 합리적인 사업성 분석과 의사결정을 위한 도구가 없다는 문제점에 주목하여 리모델링 사업성평가 모델을 제시하였다. 일반적으로 사업성(수익성) 판단은 리모델링 설계안 도출 이후에 이루어지기 마련인데, 리모델링 사업을 추진하기 위한 의사결정은 초기 추진위 단계에서 결정되기 때문에 기획단계 사업성 분석 모델이 필요하다. 이에 따라 기존의 단지정보와 자문 및 연구를 통해 도출한 리모델링 사업변수들을 이용하여 공사비, 사업비, 금융비, 일반분양수입비를 산출하였고, 이를 활용하여 투자수익률과 조합원 분담금을 개략적으로 산출할 수 있는 알고리즘을 개발하였다. 또한 개발된 초기단계 사업성 분석모델을 3개의 기추진 사례에 적용하여 모델의 적용성을 검증하였다. 비록 3개의 사례에 적용하였으나, 모델의 예측값과 실제 사례값의 오차는 5%이하로 본 모델의 적용성은 상당히 높다고 볼 수 있다. 향후 사례수를 늘려가면서 모델의 적용성을 높여간다면 실무에서 활용 가능한 유용한 tool이 될 수 있을 것으로 판단된다. 본 연구에서 개발된 개략 사업성 평가 모델은 입주민들의 빠른 의사결정을 지원하여 원활한 사업추진이 가능하게 할 것이며, 모델이 지역별로 다양하게 적용된다면 세대수증가형 리모델링사업 가능단지들의 규모를 파악하고 이를 지원하는 지자체의 정책 수립에도 기여할 수 있을 것으로 기대한다.
본 연구는 전통 발효식품에서 반려동물의 사료 및 보조식품 등에 사용될 수 있도록 안전성 확보와 프로바이오틱스 활성 등 기능성을 갖춘Bacillus 속 균주를 선발하고자 하였다. 전국에서 수집한 전통 장류에서 약 300종의 분리주를 확보하였고, Bacillus cereus가 생성하는 구토와 설사 독소 유전자 6종, ${\beta}$형 용혈성, 발암 관련 효소 3종 등을 보유하지 않거나 생성하지 않는 4종의 균주를 선별하였다. 4종의 분리주를 대상으로 항생물질 유전자 보유 여부, 세포 표면 소수성, 항생제 감수성과 당 이용성 등을 분석하였고, 최종적으로 항생물질 생성 유전자 3종을 모두 보유하고, 혈전 용해 및 세포 표면 소수성이 가장 우수한 SRCM 100731을 선정하였다. 최종 선별된 SRCM 100731의 16S rRNA 염기서열 분석 결과 Bacillus amyloliquefaciens로 동정 되었으며, 펫 사료 및 식품 등 산업적 적용을 위하여 균체 성장 최적화를 수행하였다. SRCM 100731의 배지 성분 선별을 위하여 Plackett-Burman design (PBD)을 사용하였으며, 최적 성장을 위한 배지 성분으로는 molasses와 sodium chloride, potassium chloride가 예측되었다. PBD를 통해 선정된 배지 성분의 농도를 최적화하기 위하여 central composite design (CCD)을 사용하였으며, 실험 결과 7.0% molasses, 1.1% sodium chloride, 0.5% potassium chloride로 예측되었다. 이때 최대 균체량은 12.6625 g/L로 예측되었으며, 최종적으로 실험 모델의 예측값과 실 측정값이 $12.6625{\pm}0.0658g/L$로 오차 범위내의 결과를 나타내어 실험 모델의 신뢰성을 검증할 수 있었다. 이는 실험 모델에 의해 예측된 최적 배지 사용 시 최적화 이전 배지에서의 균체량($1.8273{\pm}0.0214g/L$) 대비 약7배로 균체량이 증가함을 확인할 수 있었다. 향후 B. amyloliquefaciens SRCM 100731의 제품 개발 등 후속 연구의 진행이 필요하나 본 연구를 통해 산업 적용이 가능한 프로바이오틱스 소재의 발굴 및 산업화 배양 조건이 확립 되었으므로 앞으로 성장하고 있는 반려동물 산업에 유용하게 활용 될 수 있을 것으로 기대된다.
본 연구에서는 기상청에서 2018년부터 운영 중인 전지구 해양자료동화시스템 GODAPS에 대하여 소개하였으며, 2015년 2월부터 2016년 1월까지 일년간의 실험 수행을 통한 결과를 분석하여 이 시스템의 특성을 살펴보았다. GODAPS는 크게 해양-해빙 모델과 3차원 변분법 기반의 자료동화 시스템으로 구성되어 있고, 전지구적으로 수집된 현장 및 위성 관측자료를 자료동화하여 매일 1회 분석장과 예측장을 생산한다. 이때 해수면온도, 수온과 염분 프로파일, 해수면고도 변이, 그리고 해빙농도 관측자료를 자료동화한다. 분석증분 및 배경장/분석장으로부터의 관측증분에 대한 분석, 자료동화를 적용하지 않은 실험과의 비교 등을 통해 GODAPS 자료동화 결과를 비교검증하였다. 자료동화는 관측자료들을 효과적으로 활용하고 있었으며, 전지구 규모에서 편차를 줄인 분석장과 예측장을 생산하고 있는 것으로 나타났다. 이외에도, 변동성이 강한 중위도 해역의 쿠로시오와 걸프만 해류의 중규모 현상을 재현하는데 있어서도 결정적인 영향을 미치는 것으로 확인하였다. 해양초기장을 향상시키기 위해서는 모델과 자료동화 기술의 개발과 더불어, 다양한 관측자료를 활용하는 것이 중요하다. 하지만, 현업에서 활용할 수 있는 해양관측자료는 한계가 있으며, 따라서 가용한 자료를 자료동화 과정에 포함시키는 노력이 요구된다. 수온에 비해 염분의 경우 상대적으로 관측자료가 부족한데, 최근에는 SMAP (Soil Moisture Active Passive) 등 인공위성을 활용한 표층 염분자료가 제공되고 있으며, 기상청에서도 자료동화 과정에 독립적인 위성 염분자료를 활용한 분석장 검증 및 자료동화에 직접적용하는 연구를 추진하고 있다. 특히, 표층 염분의 자료동화를 통해 열대해역의 혼합층 깊이가 개선되고, 결과적으로 기후예측성을 향상시키는 연구결과(Hackert et al., 2020) 등을 고려할 때, 향후 위성관측 표층염분의 자료동화는 기후예측 분야에 있어서 점차 중요해질 것으로 판단된다. 본 연구의 실험결과에서도 GODAPS의 염분 관측증분 오차가 표층에서 상대적으로 크게 나타나고 있어, 해양초기장의 정확성을 높이고 나아가 기후예측성을 높이는데 위성 염분자료가 효과적으로 사용될 수 있을 것으로 기대된다.
KMAPP은 규모상세화 과정을 통해 100 m 단위의 초고해상도 기상 예측을 산출하는 체계로써 최근 수문, 농업, 신재생에너지 등 다양한 분야에서 활용되기 시작됨에 따라 각 분야별로 예측성능을 검증할 필요가 있다. 철원 지역과 전북 지역은 산지가 많은 우리나라에서 비교적 넓은 범위에 걸쳐서 수평면을 보유하고 있으며, 특히 철원은 대규모 벼 논 재배지역 중에서 실측 및 원격탐사 생물계절 자료가 많은 지역으로 KMAPP 예측 성능을 검증하는데 필요한 관측자료를 사용하기에 적절한 지점으로 판단된다. 이번 연구에서는 철원 내 농경지역의 생태적 변화에 따라 변화하는 KMAPP 기온 예측 성능을 AWS와 ASOS 관측자료를 이용하여 비교 검증하였다. 그리고 전북지역 폭염 기간 동안 가축 고온스트레스 모델과 같은 응용모델에 KMAPP 예측 자료를 입력자료로 활용하는 것을 검토하고자 일사량 예측을 ASOS 자료를 이용하여 검증하였다. 더 많은 사례의 수집과 선정이 필요하다는 한계가 있지만 농경지역에서 추수 후 기온 예측 성능이 일반 주택지 에서보다 더 크게 향상된 것을 통해 생물리적 효과가 예측 정확도에 미치는 영향을 간접적으로 추측해 볼 수 있었다. 한편, 일사량 예측의 경우 단위 변환에 따른 오차가 발생하지만 관측값과 일치하는 경향을 보여 KMAPP 자료가 지역규모의 상세 예측 자료로 응용모델에 활용될 수 있을 것으로 기대된다.
본 연구의 목적은 MDCT의 다양한 매개변수와 재구성 조건을 반영하고 z축과 x/y plane의 분해능을 동시에 평가할 수 있는 새로운 팬텀과 평가 방법을 정립하고 유용성을 파악하고자 한다. CT 장비는 Aquilion ONE(Cannon Medical System, Otawara, Japan)을 사용하였으며, 관전압 120 kV에 관전류는 260 mA, 그리고 재구성 영상은 D-FOV 300 mm2로 동일하게 설정하였다. 자체 제작한 SSP 측정 팬텀을 이용하여 고대조도 분해능과 절편두께 분해능을 평가하였다. 이때 갠트리 등각점부터의 거리와 재구성 알고리즘을 변화시켰다. 절편두께는 0.6 mm에서 10.0 mm까지 5단계로 재구성하였다. 영상의 분석은 Aquarius iNtuition Edition ver. 4.4.13.P6 software (Terarecon, California, USA)의 Profile tool을 이용하여 FWHM과 FWTM을 측정하였으며, ImageJ program(v1.53n, National Institutes of Health, USA)의 Plot profile tool을 사용하여 SPQI와 신호강도를 평가하였다. x/y plane의 고대조도 분해능을 평가한 결과, 갠트리 등각점에서 거리가 멀어질수록 2.5, 5.0, 10.0 mm의 절편두께에서 각각 4.09~11.99%, 4.12~35.52%, 4.70~37.64% 감소되었으며, 공칭 절편두께가 두꺼워질수록 감소폭이 증가되었다. 그리고 2.5, 5.0, 10.0 mm의 절편두께에서 High 알고리즘을 적용하면 고대조도 분해능이 각각 74.83, 15.18, 81.25% 증가되었다. x/y plane 및 z축의 절편두께 분해능을 평가한 결과, SSP 곡선에서 FWHM은 거의 일정하지만 사용자가 설정한 공칭 절편두께보다 모두 높게 측정되었다. 갠트리 등각점부터 거리가 멀어질수록 절편두께의 분해능이 감소되었다. 축방향 스캔이 나선형 방법보다 z축 FWHM과 FWTM이 더 증가되었다. 특히, 절편두께가 얇을수록 공칭 절편두께와 오차 범위가 증가되었다. 그리고 SPQI는 절편두께가 커질수록 증가되었으며 나선형 스캔이 축방향 스캔보다 90%에 가까워졌다. MDCT 장치의 성능을 평가할 수 있는 SSP 팬텀을 개발하여 x/y plane과 z축의 분해능을 비교 평가함으로서 노후 장비 관리와 화질 평가의 구체적인 방법으로 활용될 수 있으며, 진단 영상 분야에서 병변 감별에 큰 기여를 할 수 있을 것으로 기대한다.
자율주행차에 있어 가장 중요한 요소는 차량 주변 환경과 정확한 위치를 인식하는 것이며, 이를 위해 다양한 센서와 항법 시스템 등이 활용된다. 하지만 센서와 항법 시스템의 한계와 오차로 인해 차량 주변 환경과 위치 인식에 어려움이 있다. 이러한 한계를 극복하고 안전하고 편리한 자율주행을 위해서 고정밀의 인프라 정보를 제공하는 정밀도로지도(high definition map, HD map)의 필요성은 증대되고 있다. 정밀도로지도는 모바일 매핑 시스템(mobile mapping system, MMS)을 통해 획득된 3차원 point cloud 데이터를 이용하여 작성된다. 하지만 정밀도로지도 작성에 많은 양의 점을 필요로 하고 작성 항목이 많아 수작업이 요구되어 많은 비용과 시간이 소요된다. 본 연구는 정밀도로지도의 필수 요소인 차선을 포함한 도로, 연석, 보도, 중앙분리대, 기타 6개의 클래스로 MMS point cloud 데이터를 유의미한정보로 분할하여 정밀도로지도의 효율적인 작성에 목적을 둔다. 분할에는 머신러닝 모델인 random forest (RF), support vector machine (SVM), k-nearest neighbor (KNN) 그리고 gradient boosting machine (GBM)을 사용하였고 MMS point cloud 데이터의 기하학적, 색상, 강도 특성과 차선 분할을 위해 추가한 도로 설계적 특성을 고려하여 11개의 변수를 선정하였다. 부산광역시 미남역 일대 5차선도로 130 m 구간의 MMS point cloud 데이터를 사용하였으며, 분할 결과 각 모델의 평균 F1 score는 RF 95.43%, SVM 92.1%, GBM 91.05%, KNN 82.63%로 나타났다. 가장 좋은 분할 성능을 보인 모델은 RF이며 클래스 별 F1 score는 도로, 보도, 연석, 중앙분리대, 차선에서 F1 score가 각각 99.3%, 95.5%, 94.5%, 93.5%, 90.1% 로 나타났다. RF 모델의 변수 중요도 결과는 본 연구에서 추가한 도로 설계적 특성의 변수 XY dist., Z dist. 모두 mean decrease accuracy (MDA), mean decrease gini (MDG)가 높게 나타났다. 이는 도로 설계적 특성을 고려한 변수가 차선을 포함한 여러 클래스 분할에 중요하게 작용하였음을 뜻한다. 본 연구를 통해 MMS point cloud를 머신러닝 기반으로 차선을 포함한 여러 클래스로 분할 가능성을 확인하고 정밀도로지도 작성 시 수작업으로 인한 비용과 시간 소모를 줄이는데 도움이 될 것으로 기대한다.
본 연구는 우리나라 대나무 중 맹종죽에 대해 수간곡선식을 도출하고, 이를 이용하여 재적표를 개발하기 위하여 수행되었다. 맹종죽의 수간곡선식을 도출하기 위하여 Max & Burkhart, Kozak, Lee의 세 가지 수간곡선 모형을 이용하였다. 대나무는 목질 특성 상 내부가 비어 있기 때문에 수간 외직경과 내직경을 산출하고, 이를 연결하여 수간곡선화 하였다. 세가지 수간곡선 모형을 이용하여 수간 외직경 및 내직경을 추정한 결과, Kozak 모형이 적합도지수가 가장 높고, 오차 및 편의가 가장 적어 최적 수간곡선식으로 선정되었다. Kozak 식으로 맹종죽의 수간고별 직경을 추정하고 수간곡선을 도식화하였다. 수간곡선식에 대한 잔차도를 확인한 결과, 잔차가 모두 "0"을 중심으로 분포하여 식의 적합성이 입증할 수 있었다. 맹종죽의 재적 산출을 위해 내직경, 외직경에 대해 각각 연결한 수간곡선식을 회전시켜 회전입방체를 만들었으며, Smalian 구분구적법으로 재적을 계산하였다. 외직경으로 산출된 재적에서 내직경에 의해 산출된 재적을 공제하여 맹종죽의 재적을 도출하였다. 맹종죽의 재적은 일반용재인 일본잎갈나무 재적과 비교해 볼 때, 그 양이 20~30%에 불과한 것으로 나타났다. 그러나 맹종죽의 현재 ha당 본수와 매년 발생되는 죽순의 양을 고려한다면 개체목의 재적은 다른수종에 비해 상대적으로 적더라도, ha당 재적은 유사하거나, 오히려 더 많을 것으로 판단된다. 본 연구를 통해 국내 최초로 맹종죽의 수간곡선식 및 수간재적표가 개발되었으며, 공익 및 산업 수요 확대가 예상되는 대나무에 대한 매각 거래, 탄소흡수량 산정 등에 기초자료로 활용될 것으로 기대된다.
터널 설계 시 지반조사를 통한 암반분류 결과는 공사기간 및 공사비 산출, 그리고 터널안정성 평가에 지대한 영향을 미친다. 국내에서 지금까지 완공된 3,526개소의 터널들의 설계 및 시공을 통해 관련 기술들은 지속적으로 발전되어 왔지만, 터널 설계 시 암질 및 암반등급을 보다 정확하게 평가하기 위한 방법에 대한 연구는 미미하여 평가자의 경험 및 주관에 따라 결과의 차이가 큰 경우가 적지 않다. 따라서 본 연구에서는 암석샘플에 대한 주관적 평가를 통한 기존의 인력에 의한 암반분류 대신, 최근 지반분야에서도 그 활용도가 급증하고 있는 머신러닝 알고리즘을 이용하여 시추조사에서 획득한 다양한 암석 및 암반정보를 분석하여 보다 신뢰성있는 RMR에 의한 암반분류 모델을 제시하고자 하였다. 국내 13개 터널을 대상으로 11개의 학습 인자(심도, 암종, RQD, 전기비저항, 일축압축강도, 탄성파 P파속도 및 S파 속도, 영률, 단위중량, 포아송비, RMR)를 선정하여 337개의 학습 데이터셋과 60개의 시험 데이터셋을 확보하였으며, 모델의 예측성능을 향상시키기 위해 6개의 머신러닝 알고리즘(DT, SVM, ANN, PCA & ANN, RF, XGBoost)과 각 알고리즘별 다양한 초매개변수(hyperparameter)를 적용하였다. 학습된 모델의 예측성능을 비교한 결과, DT 모델을 제외한 5개의 머신러닝 모델에서 시험데이터에 대한 RMR 평균절대오차 값이 8 미만으로 수렴되었으며, SVM 모델에서 가장 우수한 예측성능을 나타내었다. 본 연구를 통해 암반분류 예측에 대한 머신러닝 기법의 적용 가능성을 확인하였으며, 향후 다양한 데이터를 지속적으로 확보하여 예측모델의 성능을 향상시킨다면 보다 신뢰성 있는 암반 분류에 활용될 수 있을 것으로 기대된다.
본 연구는 국민디자인단 사례를 분석하여 공공 영역에서의 디자인 활용 확대와 지속가능한 공공서비스디자인 전략을 제안하는 것이다. 본 연구의 시간적 범위는 국민디자인단이 시행된 2014년부터 2021년까지이며, 내용적 범위는 국민디자인단의 과제이나 2014년 시범사업 과제부터 2021년까지 진행된 모든 사례를 확인하기에는 한계가 있어, 광화문1번가 홈페이지 및 국민디자인단 사례집에서 확인할 수 있는 과제를 연구의 대상으로 한정하였다. 본 연구는 다음과 같이 진행하였다. 첫째, 디자인정책과 공공서비스디자인에 대한 문헌을 참고하여 공공정책 개발 단계에서 디자인의 역할 규명과 활용방안에 대한 시사점을 찾아내고, 둘째, 주요 시사점을 바탕으로 공공정책에 서비스디자인을 활용한 대표적 사례인 국민디자인단 추진 과제를 대상으로 과제명과 추진내용을 중심으로 분석하였다. 문헌연구와 사례연구를 바탕으로 다양한 공공분야에 디자인이 활용 가능하다는 시사점을 발견하였으며 공공 영역에서의 지속가능한 디자인 활용 확대를 위해 제안하는 정책적 시사점은 다음과 같다. 첫째, 공공정책 및 서비스에서 서비스디자인의 인식 제고를 통해 시민참여를 넘어 시민들의 자발적인 행동변화를 이끌어내는 역할로서 디자인의 활용이 확장되는 기회를 지속적으로 마련한다. 둘째, 공공서비스디자인의 적극적 활용의 산물인 국민디자인단 성공사례에 대한 보다 적극적인 홍보가 필요하다. 셋째, 공공서비스디자인의 효용성과 실효성을 검증하기 위해 보다 구체적인 평가체계를 도입하여야 한다. 이를 통해 우리 사회가 직면한 다양한 문제를 디자인을 활용하여 정책 전달의 오차를 축소하고 시민 중심 공공서비스를 실현하는데 크게 기여할 것이라 기대한다.
다양한 지구관측위성은 발사 후 정확한 고품질의 자료를 제공하는 것이 중요하다. 위성 자료 품질을 유지 및 보완하기 위해서는 서로 다른 센서 차이를 고려하는 spectral band adjustment factor (SBAF)를 활용한 교차 검보정 과정이 필요하다. 따라서 본 연구에서는 pseudo-invariant calibration sites 중 Libya4, Algeria3, Mauritania2 에서 수집한 Landsat-8, Sentinel-2A 위성 영상을 활용하여 SBAF 산출 및 적용을 통해 밴드 대역 폭 차이로 인해 발생하는 불확실성을 조정하였다. 두 위성 모두 Blue, Green, Red를 포함하고 Sentinel-2A의 경우 near-infrared (NIR) narrow와 NIR 두 가지 밴드 모두에 SBAF를 적용하여 밴드대역폭 유사도에 따른 반사도 차이를 정량적으로 비교하였다. SBAF 적용 후, NIR을 제외한 모든 밴드(Blue, Green, Red, NIR narrow)에서 1% 내외의 반사도 차이로 유의미한 결과가 나타났다. Sentinel-2A NIR 밴드의 경우 밴드대역폭 차이가 NIR narrow에 비해 크게 나타났지만, SBAF 적용 후에 반사도 차이가 허용 오차범위인 5%와 1-2% 차이로 SBAF 적용이 가능한 것으로 나타났다. 따라서, 위성 활용이 제한적인 상황에서 두 센서의 밴드대역폭 차이가 큰 경우에도 SBAF를 적용할 수 있다고 판단하였고 위성 자료의 품질 및 연속성을 활용하는 연구에 도움이 될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.