• Title/Summary/Keyword: 기공압착

Search Result 32, Processing Time 0.025 seconds

FE-Analysis on void closure behavior during hot open die forging process (열간 자유단조 공정시 내부 기공 압착 거동에 관한 해석)

  • Kwon, Y.C.;Lee, J.H.;Lee, S.W.;Jung, Y.S.;Kim, N.S.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.160-164
    • /
    • 2007
  • In the steel industry, there is a need to produce large forged parts for the automobile industries, the flight and shipping industries ad military industries. In the steel-industry application, a cogging technique for cast ingots is required, because the major parts are needed as one large body in order to obtain higher quality. Therefore, cogging process is the primary step in manufacturing of practically large open-die forging. In the cogging process, internal voids have to be eliminated as defects, The present work is concerned with the elimination of the internal voids in large ingots so as obtain sound products. In this study, hot compression tests were carried out to obtain the flow stress of cast microstructure at different temperature and strain rates. The FEM analysis are performed to investigate the overlap defect of cast ingots during cogging stage. The measure flow stress data were used to simulate the cogging process of cast ingot using the practical material properties. Also the analysis of void closure are performed by using the $DEFORM^{TM}$-3D. The calculated results of void closure behavior are compared with the measured results before and after cogging, which are scanned by the X-ray scanner. From this result, the criteria for deformation amounts effect on the void closure can be investigated by the comparison of practical experiment and numerical analysis.

  • PDF

FE Analysis for the Prediction of Void Closure on the Free Forging Process of a Large Rotor (대형 로터의 자유단조공정에서 기공압착 예측을 위한 유한요소해석)

  • Lee, K.J.;Bae, W.B.;Kim, D.K.;Kim, Y.D.;Cho, J.R.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.126-131
    • /
    • 2007
  • Voids in a large rotor are formed in solidification process of a cast ingot. The voids have to be eliminated from the rotor by a forming process, because they would became stress-intensity factors which suddenly fracture the rotor in the operation. Previous studies on void-elimination of a large rotor have mainly focused on finding the process variables affecting the void-closure. But the study on the amount of void closure in a large rotor has been very rare. This study was performed to obtain an equation which predicts the amount of void-closure in a forging process of a large rotor and to evaluate the availability of the void-closure equation through finite element analyses. Firstly, 2D FE analysis was carried out to find effects of time integral of hydrostatic stress and effective strain on void volume rate of a large rotor in the upsetting process for various diameters and shapes of void, and material temperature. From the 2D FE analysis, we found that effective strain was suitable for predicting the void-closure of a large rotor, because there was a constant relationship between void volume rate and effective strain. And a void-closure equation was proposed fur predicting void-closure of a large rotor in the upsetting process. Finally, ken the 3D FE analysis, the proposed void-closure equation was verified to be useful for upsetting and cogging processes.

Forging of 1.9wt%C Ultrahigh Carbon Workroll : Part II - Void Closure and Diffusion Bonding (1.9wt%C 초고탄소 워크롤 단조 공정 : Part II - 기공압착 및 확산접합)

  • Kang, S.H.;Lim, H.C.;Lee, H.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.463-469
    • /
    • 2013
  • In the previous work, a new forging process design, which included incremental upsetting, diffusion bonding and cogging, was suggested as a method to manufacture 1.9wt%C ultrahigh carbon workrolls. The previous study showed that incremental upsetting and diffusion bonding are effective in closing voids and healing of the closed void. In addition, compression tests of the 1.9wt%C ultrahigh carbon steel revealed that new microvoids form within the blocky cementite at temperatures of less than $900^{\circ}C$ and that local melting can occur at temperatures over $1120^{\circ}C$. Thus, the forging temperature should be controlled between 900 and $1120^{\circ}C$. Based on these results, incremental upsetting and diffusion bonding were used to check whether they are effective in closing and healing voids in a 1.9wt%C ultrahigh carbon steel. The incremental upsetting and diffusion bonding were performed using sub-sized specimens of 1.9wt%C ultrahigh carbon steel. The specimen was deformed only in the radial direction during the incremental upsetting until the reduction ratio reached about 45~50%. After deformation the specimens were kept at $1100^{\circ}C$ for the 1 hour in order to obtain a high bonding strength for the closed void. Finally, microstructural observations and tensile tests were conducted to investigate void closure behavior and bonding strength.

대형단조에서의 미세기공 압착해석을 위한 유한요소법의 Global/Local 기법

  • 박치용;영동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.819-823
    • /
    • 1996
  • In the large steel ingosts, void defects exhibiting microvoid shapes are inevitably formed in the V-segregation zone of the ingots during solidification. In the hot open-die forging process, material properties are improved by eliminating internal porosity. The void size is practically very small as compared with the huge large ingot. Thus, for deformation analysis of a large ingot, a massive number of elements are needed in order to describe a void surface and to uniform mesh sturcture. In the present work the Global/Local scheme has been introduced in order to reduce the computational time and to easily generate the mesh system as a void module of local mesh for obtaining the accurate solution around a void. The procedure of the global- local method consists of two steps. In the first step global analysis is carried out which seeks a reasonably good solution with a cpurse mesh system without describing a void. Then, a local analysis is performed locally with a fine mesh system under the size-criterion of a local region. The computational time has been greatly reduced. Though the work it has been shown that large ingot forging incorporation small voids can be effectively analyzed by using the proposed Global/Local scheme.

  • PDF

Effect of Radial Parameters in Cogging Process on Void Closure for Large Forged Products (단강품 기공의 압착성 향상을 위한 레이디얼 단련변수의 영향)

  • Choi, H.J.;Choi, S.;Yoon, D.J.;Jung, J.H.;Baek, D.K.;Choi, S.K.;Park, H.J.;Lim, S.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.67-70
    • /
    • 2008
  • This paper deals with the effect of radial parameters in cogging process such as reduction in height (Rh) and rotational angle ($\theta$) of a billet on a void closure for large forged products. Usually closing and consolidation of internal void defects in a ingot is a vital matter when utilized as large forged products, using a press with limited capacity and the sizes of the ingots becoming larger. Consequently, it is important to develop cogging process for improvement of internal soundness without a void defect and cost reduction by solid forging alone with limited press capacity. For experiments of cogging process, hydraulic press with a capacity of 800 ton was used together with a small manipulator which was made for rotation and overlapping of a billet. Size of a void was categorized into two types; $\emptyset$ 6.0 mm and $\emptyset$ 9.0 mm to investigate the change of closing and consolidation of void defects existed in the large ingot during the cogging process. Also open void and closed void in the ingot were tackled to show the differentiation of closing process of internal voids with respect to void sizes. In this paper systematic configuration for closing process of void defects were expressed based on this experiment results in the cogging process.

  • PDF

Effect of Electrode Design on Electrochemical Performance of Highly Loaded LiCoO2 Positive Electrode in Lithium-ion Batteries (리튬이온 이차전지용 고로딩 LiCoO2 양극의 전극설계에 따른 전기화학적 성능연구)

  • Kim, Haebeen;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.47-55
    • /
    • 2020
  • Highly loaded LiCoO2 positive electrodes are prepared to construct high-energy density lithium-ion batteries, their electrochemical performances are evaluated. For the standard electrode, a loading of about 2.2 mAh/㎠ is used, and for a high-loading electrode, an electrode is manufactured with a loading level of about 4.4 mAh/㎠. The content of carbon black as electronic conducting additive, and the porosity of the electrode are configured differently to compare the effects of electron conduction and ionic conduction in the highly loaded LiCoO2 electrode. It is expected that the electrochemical performance is improved as the amount of the carbon black increases, but the specific capacity of the LiCoO2 electrode containing 7.5 weight% carbon black is rather reduced. When the conductive material is excessively provided, an increase of electrode thickness by the low content of the LiCoO2 active material in the same loading level of the electrode is predicted as a cause of polarization growth. When the electrode porosity increases, the path of ionic transport can be extended, but the electron conduction within the electrode is disadvantageous because the contact between the active material and the carbon black particles decreases. As the electrode porosity is lowered through the sufficient calendaring of the electrode, the electrochemical performance is improved because of the better contact between particles in the electrode and the reduced electrode thickness. In the electrode design for the high-loading, it is very important to construct the path of electron conduction as well as the ion transfer and to reduce the electrode thickness.

Analysis of contamination characteristics of filter cloth in filter press by repeated dehydration of organic sludge and evaluation of ultrasonic cleaning application (유기성 슬러지 반복 탈수에 의한 필터프레스 여과포 오염 특성 분석 및 초음파 세척 적용 평가)

  • Eunju Kim;Cheol-Jin Jeong;Kyung Woo Kim;Tae Gyu Song;Seong Kuk Han
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.2
    • /
    • pp.15-25
    • /
    • 2024
  • In this study, the regeneration effect of pressurized water and ultrasonic cleaning was investigated for contaminated filter cloth from the sewage sludge filter press process. For this purpose, contaminated filter cloth was collected from a 3-ton sewage sludge hydrothermal carbon treatment filter press. First, the contamination characteristics were analyzed. According to the location of the filter cloth, air permeability and unit mass were measured, and compared with the values of a new filter cloth. Next, the results were mapped over the entire area to evaluate the contamination characteristics. Finally, pressure cleaning at 3 bar and ultrasound at frequencies of 34, 76, 120, and 168 kHz were performed on the contaminated filter cloth. In addition, the cleaning efficiency was evaluated by 3 levels of contamination degree. As a result, pore contamination occurred mainly at the bottom and both sides of the filter cloth, where the filter material was continuously injected and compressed. Surface contamination appeared evenly over the entire area. As a result of washing, air permeability increased by 1.3-3.1%p and contaminant removal was by 2.7-4.4% under pressure. In ultrasonic cleaning, air permeability increased by 12.5-61.5%p and contaminants were removed by 2.7-29.2%. In ultrasonic cleaning the lower the frequency, the higher air permeability and contaminant removal rate. Also, The higher pore contamination level, the better the air permeability improvement and contaminant removal.

Effect of Colloidal Silica on Selective Catalytic Reduction (SCR) Catalyst Activity and Thermal Stability (Colloidal Silica의 특성이 SCR 촉매의 성능 및 열적 안정성에 미치는 영향)

  • Cha, Jin-Sun;Lee, Hyung Won;Shin, Min-Chul;Jeong, Bora;Kim, Hong-Dae
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.61-66
    • /
    • 2020
  • In this study, the effect of characteristics of colloidal silica, which was used as an additive in the compression/coating catalyst process, on activities and thermal stabilities of the catalysts was investigated. The shape, size, specific surface area and porosity, and composition of four different types of colloidal silica materials were analyzed, and the NOx conversion of V2O5/TiO2 catalyst prepared by these colloidal silica were studied. Properties of the catalysts prepared by colloidal silica depend on the nature of the colloidal silica used, in particular the alkaline substances such as Na in the silica were evaluated to be directly effect on the deNOx conversion of the catalyst. In addition, higher silica contents in the colloidal silica were found to improve the deNOx activity and thermal stability of the catalyst.

Quality Characteristics of Yukwa Pellets and Yukwa Bases According to Ratio of Soju Addition (소주 첨가비율이 유과반대기 및 유과바탕에 미치는 품질특성)

  • Kim, Ji-Youn;Shim, Ki-Hoon;Choi, Ok-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.583-587
    • /
    • 2011
  • This study evaluated the quality characteristics of yukwa pellets and yukwa bases on the ratio of soju addition (0, 25, 50, 75, and 100% v/v). Yukwa base with 50% ratio of soju addition displayed the highest diameter, volume and specific volume. The yukwa base with 75% ratio of soju addition displayed the longest in length. The weight of yukwa base increased as the ratio of soju increased. Lightness increased in yukwa pellet and yukwa base as the ratio of soju increased. Lightness of yukwa base was higher than yukwa pellet, but yellowness and redness of yukwa base were lower than yukwa pellet. Air cell size of yukwa base decreased as the ratio of soju increased. The compression and cutting force of yukwa base with 50% ratio of soju addition were lowest, while yukwa base with 0% soju was highest. In the sensory evaluation, preference of color increased as the ratio of soju addition increased. Yukwa base with 50% ratio of soju addition was the highest in internal compactness, mouth-feel, and overall preference. The results show that a soju ratio of 50-75% addition for total liquid is useful in the production of high quality yukwa base.

The Fabrication and Characterization of Embedded Switch Chip in Board for WiFi Application (WiFi용 스위치 칩 내장형 기판 기술에 관한 연구)

  • Park, Se-Hoon;Ryu, Jong-In;Kim, Jun-Chul;Youn, Je-Hyun;Kang, Nam-Kee;Park, Jong-Chul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.3
    • /
    • pp.53-58
    • /
    • 2008
  • In this study, we fabricated embedded IC (Double Pole Double throw switch chip) polymer substrate and evaluate it for 2.4 GHz WiFi application. The switch chips were laminated using FR4 and ABF(Ajinomoto build up film) as dielectric layer. The embedded DPDT chip substrate were interconnected by laser via and Cu pattern plating process. DSC(Differenntial Scanning Calorimetry) analysis and SEM image was employed to calculate the amount of curing and examine surface roughness for optimization of chip embedding process. ABF showed maximum peel strength with Cu layer when the procuring was $80\sim90%$ completed and DPDT chip was laminated in a polymer substrate without void. An embedded chip substrate and wire-bonded chip on substrate were designed and fabricated. The characteristics of two modules were measured by s-parameters (S11; return loss and S21; insertion loss). Insertion loss is less than 0.55 dB in two presented embedded chip board and wire-bonded chip board. Return loss of an embedded chip board is better than 25 dB up to 6 GHz frequency range, whereas return loss of wire-bonding chip board is worse than 20 dB above 2.4 GHz frequency.

  • PDF