• 제목/요약/키워드: 기계 번역

검색결과 416건 처리시간 0.022초

기계번역과 인간번역의 혼합적 접근법 (The Blended Approach of Machine Translation and Human Translation)

  • 김양순
    • 문화기술의 융합
    • /
    • 제8권1호
    • /
    • pp.239-244
    • /
    • 2022
  • 인공신경망기계번역은 점진적으로 인간번역과 기계번역의 경계를 허물어가고 있다. 기계번역의 현재와 미래 그리고 기계번역의 장·단점을 논의하는 가운데 인간번역과 기계번역의 실제 번역사례들을 살펴보고 최근 수년간 놀라운 발전을 이룬 인공신경망기계번역이 왜 인간번역의 손길을 필요로 하는지를 논의하는 것이 본 연구의 목표이다. 번역분야에서 인간이 기계로 대치될 수 있는가? 인공신경망기계번역 시대에 인간번역가는 도태되어야 하는가? 그리고 인공신경망기계번역과 지역의 세계화에 기반을 두고 확장하고 있는 세계영어들이라는 언어다양성 시대에 언어장벽을 없애는 것이 가능한가라는 질문 모두에 대하여 부정적인 결론과 함께 기계번역은 신속성, 정확성, 저비용의 생산성이라는 장점을 갖는 유용한 도구임에도 불구하고, 문화, 차용어, 중의성, (국가)방언, 신조어 등의 분야에서는 인간번역이 요구된다고 제안한다. 기계학습을 기반으로 하는 기계번역과 직관과 습득을 기반으로 하는 인간번역은 협업의 상태로 공생 발전해야할 것이다. 기계번역은 역 번역과 인간의 사후편집과 같은 방법을 활용할 때 도덕적 문제를 야기하지 않는 유용한 번역도구가 될 것이다. 결론적으로 기계번역은 인간번역의 손길 없이는 완성될 수 없다는 혼합적 접근법을 제안한다.

단어 수준 한국어-영어 기계번역 품질 예측 (Word-level Korean-English Quality Estimation)

  • 어수경;박찬준;서재형;문현석;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.9-15
    • /
    • 2021
  • 기계번역 품질 예측 (Quality Estimation, QE)은 정답 문장에 대한 참조없이 소스 문장과 기계번역 결과를 통해 기계번역 결과에 대한 품질을 수준별 주석으로 나타내주는 태스크이며, 다양한 활용도가 있다는 점에서 꾸준히 연구가 수행되고 있다. 그러나 QE 모델 학습을 위한 데이터 구성 시 기계번역 결과에 대해 번역 전문가가 교정한 문장이 필요한데, 이를 제작하는 과정에서 상당한 인건비와 시간 비용이 발생하는 한계가 있다. 본 논문에서는 번역 전문가 없이 병렬 또는 단일 말뭉치와 기계번역기만을 활용하여 자동화된 방식으로 한국어-영어 합성 QE 데이터를 구축하며, 최초로 단어 수준의 한국어-영어 기계번역 결과 품질 예측 모델을 제작하였다. QE 모델 제작 시에는 Cross-lingual language model (XLM), XLM-RoBERTa (XLM-R), multilingual BART (mBART)와 같은 다언어모델들을 활용하여 비교 실험을 수행했다. 또한 기계번역 결과에 대한 품질 예측의 객관성을 검증하고자 구글, 아마존, 마이크로소프트, 시스트란의 번역기를 활용하여 모델 평가를 진행했다. 실험 결과 XLM-R을 활용하여 미세조정학습한 QE 모델이 가장 좋은 성능을 보였으며, 품질 예측의 객관성을 확보함으로써 QE의 다양한 장점들을 한국어-영어 기계번역에서도 활용할 수 있도록 했다.

  • PDF

한-영 관용구 기계번역을 위한 NMT 학습 방법 (NMT Training Method for Korean-English Idiom Machine Translation)

  • 최민주;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.353-356
    • /
    • 2020
  • 관용구는 둘 이상의 단어가 결합하여 특정한 뜻을 생성한 어구로 기계번역 시 종종 오역이 발생한다. 이는 관용구가 지닌 함축적인 의미를 정확하게 번역할 수 없는 기계번역의 한계를 드러낸다. 따라서 신경망 기계 번역(Neural Machine Translation)에서 관용구를 효과적으로 학습하려면 관용구에 특화된 번역 쌍 데이터셋과 학습 방법이 필요하다. 본 논문에서는 한-영 관용구 기계번역에 특화된 데이터셋을 이용하여 신경망 기계번역 모델에 관용구를 효과적으로 학습시키기 위해 특정 토큰을 삽입하여 문장에 포함된 관용구의 위치를 나타내는 방법을 제안한다. 실험 결과, 제안한 방법을 이용하여 학습하였을 때 대부분의 신경망 기계 번역 모델에서 관용구 번역 품질의 향상이 있음을 보였다.

  • PDF

영어학습 도구로서 기계번역기의 가용성 분석 - as구문 역번역을 통하여 (Analysis of the Usability of Machine Translators as an English Learning Tool -Through backtranslation of the as phrase)

  • 박권호;김정렬
    • 한국콘텐츠학회논문지
    • /
    • 제21권5호
    • /
    • pp.259-267
    • /
    • 2021
  • 기계번역기는 1950년대 처음 등장하였고 2010년대 신경망번역시스템을 적용하면서 번역정확성에 비약적인 발전을 하였다. 하지만 아직도 복잡한 문장의 번역에는 어려움을 겪고 있으며 이것은 영어학습 도구로서 기계번역기를 이용하는데 불편함을 주었다. 따라서 본 연구는 고등학교 1학년 수준의 문장들 중 다양한 뜻과 품사를 가지고 있는 as가 포함된 문장들을 분석대상으로 기계번역기를 이용한 역번역실험을 통해서 영어학습 도구로서 기계번역기의 가용성을 분석했다. 분석도구로는 신경망번역시스템을 이용한 대표적인 기계번역기인 구글 번역기, 네이버 파파고, 마이크로소프트 번역기를 이용하였다. 연구결과 기계번역기 사용시 각 as용법에 따라서 가용성이 유의하게 다른 것을 확인하였고 그에 따라 각 문장에 쓰인 as용법을 기계번역기를 사용하여 학습할 시 가용성이 높은 용법, 보통인 용법, 낮은 용법으로 분류하였다. 선행연구와는 다르게 직접 학습도구로서 기계번역기를 분석했고 접속사 as의 용법의 가용성을 수치화 시킨 데 있어서 본 연구는 연구적 공헌점을 가진다.

단어 정렬을 이용한 한국어-영어 비자기회귀 신경망 기계 번역 (Korean-English Non-Autoregressive Neural Machine Translation using Word Alignment)

  • 정영준;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.629-632
    • /
    • 2021
  • 기계 번역(machine translation)은 자연 언어로 된 텍스트를 다른 언어로 자동 번역 하는 기술로, 최근에는 주로 신경망 기계 번역(Neural Machine Translation) 모델에 대한 연구가 진행되었다. 신경망 기계 번역은 일반적으로 자기회귀(autoregressive) 모델을 이용하며 기계 번역에서 좋은 성능을 보이지만, 병렬화할 수 없어 디코딩 속도가 느린 문제가 있다. 비자기회귀(non-autoregressive) 모델은 단어를 독립적으로 생성하며 병렬 계산이 가능해 자기회귀 모델에 비해 디코딩 속도가 상당히 빠른 장점이 있지만, 멀티모달리티(multimodality) 문제가 발생할 수 있다. 본 논문에서는 단어 정렬(word alignment)을 이용한 비자기회귀 신경망 기계 번역 모델을 제안하고, 제안한 모델을 한국어-영어 기계 번역에 적용하여 단어 정렬 정보가 어순이 다른 언어 간의 번역 성능 개선과 멀티모달리티 문제를 완화하는 데 도움이 됨을 보인다.

  • PDF

전문번역사들의 기계번역 수용에 관한 연구 (Study on Translators' Acceptance of Machine Translation)

  • 천종성
    • 한국융합학회논문지
    • /
    • 제11권6호
    • /
    • pp.281-288
    • /
    • 2020
  • 본 연구는 구글 번역과 파파고와 같은 신경망 기계번역(NMT)에 대한 수용성을 탐구한다. 기계번역의 도입으로 훈련받은 번역사들이 위협을 느끼리라는 것과 기계와의 협력을 모색해야 한다는 논의가 상충하고 있는 시점에서, 오랫동안 기술수용을 예측해 온 TAM을 적용하여 전문번역사들의 기계번역 수용에 관한 의사결정 과정을 살펴보았다. 결론적으로 번역사들이 기계번역에 대해 위협을 느낄 것이라는 기존의 규범적 논의와 달리 본 연구의 경험적 결과는 번역사들이 자신의 업무의 효율을 높여주는 유용한 도구로 인식하고 있음이 밝혀졌다. 특히 같이 작업하는 동료들의 조언과 사회적 분위기가 우호적일 경우 이러한 경향은 더욱 강해졌다.

웹용 다국어 기계번역을 위한 전처리기 (A Preprocessing System for Multi-Lingual Machine Translation of Web Pages)

  • 이영우;안동원;서진원;정성종
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.204-206
    • /
    • 1998
  • 여러 언어들로 작성된 웹문서들을 다국어 기계번역기에서 번역하기 위해서는 우선 해당 웹문서가 어떠한 언어로 작성되었는지를 알아내야 한다. 코드 분석을 통하여 웹문서를 작성한 언어를 알게되면 해당 언어를 번역하는 기계번역기를 작동시킬 수 있다. 또한, 웹문서에서 기계번역의 대상은 HTML 태그를 제외한 일반 문장이다. 따라서, 웹용 기계번역의 전처리기에서 웹문서에서 HTML 태그를 분리하여야 하며 번역이 완료된 후 번역된 문서에 HTML 태그를 복원하여 웹브라우저에서 번역된 문서를 볼 수 있어야 한다. 본 논문에서는 웹용 다국어 기계번역을 위한 전처리기의 태그관리기와 코드인식기를 설명한다.

  • PDF

기계번역 사후교정(Automatic Post Editing) 연구 (Automatic Post Editing Research)

  • 박찬준;임희석
    • 한국융합학회논문지
    • /
    • 제11권5호
    • /
    • pp.1-8
    • /
    • 2020
  • 기계번역이란 소스문장(Source Sentence)을 타겟문장(Target Sentence)으로 컴퓨터가 번역하는 시스템을 의미한다. 기계번역에는 다양한 하위분야가 존재하며 APE(Automatic Post Editing)이란 기계번역 시스템의 결과물을 교정하여 더 나은 번역문을 만들어내는 기계번역의 하위분야이다. 즉 기계번역 시스템이 생성한 번역문에 포함되어 있는 오류를 수정하여 교정문을 만드는 과정을 의미한다. 기계번역 모델을 변경하는 것이 아닌 기계번역 시스템의 결과 문장을 교정하여 번역품질을 높이는 연구분야이다. 2015년부터 WMT 공동 캠페인 과제로 선정되었으며 성능 평가는 TER(Translation Error Rate)을 이용한다. 이로 인해 최근 APE에 모델에 대한 다양한 연구들이 발표되고 있으며 이에 본 논문은 APE 분야의 최신 동향에 대해서 다루게 된다.

특허 기계 번역에 대한 RIBES 한국어 자동평가 문제에 대한 고찰 (KoRIBES : A Study on the Problems of RIBES in Automatic Evaluation English-Korean Patent Machine Translation)

  • 장현진;장문석;노한성
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.543-547
    • /
    • 2020
  • 자연어 처리에서 기계번역은 가장 많이 사용되고 빠르게 발전하고 있다. 기계번역에 있어서 사람의 평가가 가장 정확하고 중요하지만 많은 시간과 비용이 발생된다. 이에 기계번역을 자동 평가하는 방법들이 많이 제안되어 사용되고 있지만, 한국어 특성을 잘 반영한 자동평가 방법은 연구되지 않고 있다. BLEU와 같은 자동평가 방법을 많이 사용하고 있지만 언어의 특성 차이로 인해 원하는 평가결과를 얻지 못하는 경우가 발생하며, 특히 특허나 논문과 같은 기술문서의 번역에서는 더 많이 발생한다. 이에 본 논문에서는 단어의 정밀도와 어순이 평가에 영향이 있는 RIBES를 가지고 특허 기계 번역에서 영어→한국어로 기계 번역된 결과물의 자동평가에 대해 사람의 평가와 유사한 결과를 얻기 위해 tokenization 과정에서 복합 형태소 분리를 통한 평가방법을 제안하고자 한다.

  • PDF

딥러닝 기반 한국어 방언 기계번역 연구 (Deep Learning based Korean Dialect Machine Translation Research)

  • 임상범;박찬준;조재춘;양영욱
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.490-495
    • /
    • 2021
  • 표준어와 방언사이에는 위계가 존재하지 않고 열등하지 않다는 사상을 기반으로 방언을 보존하기 위한 다양한 노력들이 이루어지고있다. 또한 동일한 국가내에서 표준어와 방언간의 의사소통이 잘 이루어져야한다. 본 논문은 방언 연구보존과 의사소통의 중요성을 바탕으로 한국어 방언 기계번역 연구를 진행하였다. 대표적인 방언 중 하나인 제주어와 더불어 강원어, 경상어, 전라어, 충청어 기반의 기계번역 연구를 진행하였다. 공개된 AI Hub 데이터를 바탕으로 Transformer기반 copy mechanism을 적용하여 방언 기계번역의 성능을 높이는 모델링 연구를 진행하였으며 모델배포의 효율성을 위하여 Many-to-one기반 universal한 방언 기계번역기를 개발하였고 이를 one-to-one 모델과의 성능비교를 진행하였다. 실험결과 copy mechanism이 방언 기계번역 모델에 매우 효과적인 요소임을 알 수 있었다.

  • PDF