• Title/Summary/Keyword: 기계학습 자질

Search Result 141, Processing Time 0.023 seconds

Grammatical Relation Analysis using Support Vector Machine in BioText (바이오 문서에서 지지 벡터 기계를 이용한 문법관계 분석)

  • Park, Kyung-Mi;Hwang, Young-Sook;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.287-292
    • /
    • 2003
  • 동사와 기본구 사이의 문법관계 분석은 품사부착과 기본구 인식이 수행된 상태에서, 동사와 의존관계를 갖는 기본구를 찾고 각 구의 구문적, 의미적 역할을 나타내는 기능태그를 인식하는 작업이다. 본 논문에서는 바이오 문서에서 단백질과 단백질, 유전자와 유전자 사이의 상호작용관계를 자동으로 추출하기 위해서 제안한 문법관계 분석 방법을 적용하고 따라서 동사와 명사고, 전치사고, 종속 접속사의 관계만을 분석하며 기능태그도 정보추출에 유용한 주어, 목적어를 나타내는 태그들로 제한하였다. 기능태그 부착과 의존관계 분석을 통합해 수행하였으며, 지도학습 방법 중 분류문제에서 좋은 성능을 보이는 지지 벡터 기계를 분류기로 사용하였고, 메모리 기반 학습을 사용하여 자질을 추출하였으며, 자료부족문제를 완화하기 위해서 저빈도 단어는 품사 타입 또는 워드넷의 최상위 클래스의 개념을 이용해서 대체하였다. 시험 결과지지 벡터 기계를 이용한 문법관계 분석은 실제 적용시 빠른 수행시간과 적은 메모리 사용으로 상호작용관계 추출에서 효율적으로 사용될 수 있음을 보였다.

  • PDF

Solving Automatically Algebra Math Word Problem in Korean (한국어 수학 문장제 문제 자동 풀이)

  • Woo, Changhyub;Gweon, Gahgene
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.310-315
    • /
    • 2018
  • 본 논문에서는 한국어 수학 문장제 문제 자동 풀이를 위한 방법을 소개한다. 수학 문장제 문제란 수학적 관계가 언어와 숫자로 주어질 때, 문제에서 요구하는 정보를 도출하는 수학 문제로, 언어 의미 분석과 수학적 관계 추출이 요구된다. 본 논문에서는 이원 일차 연립 방정식을 포함한 514 문제의 영어 데이터셋을 번역해 한국어 문제를 확보하였다. 또한 한국어의 수학적 관계 표현과 언어 유형적 특성을 고려한 자질 추출을 제안하고, 템플릿 기반 Log-linear 모델이 정답 방정식을 분류하도록 학습하였다. 5겹 교차 검증을 실시한 결과, 영어 문제를 풀이한 선행 연구의 정답률 79.7% 대비 1%p 낮은 78.6%의 정답률을 보였다.

  • PDF

Improved Sentence Boundary Detection Method for Web Documents (웹 문서를 위한 개선된 문장경계인식 방법)

  • Lee, Chung-Hee;Jang, Myung-Gil;Seo, Young-Hoon
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.6
    • /
    • pp.455-463
    • /
    • 2010
  • In this paper, we present an approach to sentence boundary detection for web documents that builds on statistical-based methods and uses rule-based correction. The proposed system uses the classification model learned offline using a training set of human-labeled web documents. The web documents have many word-spacing errors and frequently no punctuation mark that indicates the end of sentence boundary. As sentence boundary candidates, the proposed method considers every Ending Eomis as well as punctuation marks. We optimize engine performance by selecting the best feature, the best training data, and the best classification algorithm. For evaluation, we made two test sets; Set1 consisting of articles and blog documents and Set2 of web community documents. We use F-measure to compare results on a large variety of tasks, Detecting only periods as sentence boundary, our basis engine showed 96.5% in Set1 and 56.7% in Set2. We improved our basis engine by adapting features and the boundary search algorithm. For the final evaluation, we compared our adaptation engine with our basis engine in Set2. As a result, the adaptation engine obtained improvements over the basis engine by 39.6%. We proved the effectiveness of the proposed method in sentence boundary detection.

A Study on Representation Difficulty Assessment of Educational Presentation Materials (교육용 슬라이드의 표현적 난이도 측정에 관한 연구)

  • Kim, Seongchan;Song, Sa-Kwang;Yi, Mun Y.
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.1054-1056
    • /
    • 2017
  • 대학과 같은 고등교육 현장에서 슬라이드는 수업 또는 세미나에 많이 활용되는 매체이다. 최근에는 SlideShare 등의 슬라이드 전용 공유 플랫폼까지 등장하며 온라인상에 더 많은 교육용 슬라이드가 축적되고 있다. 이 연구에서는 이러한 슬라이드 형태의 교육 자료에 대해 인식하기 쉽고 어려운 정도인 표현적 난이도를 자동으로 측정하는 기법을 제안한다. 제안하는 60개의 자질을 활용하여 기계학습 모델을 구축하고 표현적으로 고 난이도와 저 난이도의 슬라이드를 효과적으로 구분한다. 정밀하게 파악된 난이도 정보는 콘텐츠 선택에 있어 사용자 편의성을 획기적으로 증대시켜 줄 수 있다.

Estimation of the steps of cardiovascular disease by machine learning based on aptamers-based biochip data (기계학습에 의한 압타머칩 데이터 기반 심혈관 질환 단계의 예측)

  • Kim Byoung-Hee;Kim Sung-Chun;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.85-87
    • /
    • 2006
  • 압타머칩은 (주)제노프라에서 개발한 새로운 개념의 바이오칩으로서, 압타머(aptamer)를 이용하여 혈액중의 특정 단백질군의 상대적인 양의 변화를 측정할 수 있으며, 질병 진단에 바로 응용할 수 있는 도구이다. 본 논문에서는 압타머칩 데이터 분석을 통해 심혈관 질환 환자의 질병 진행 단계를 예측할 수 있음을 보인다. 정상, 안정/불안정성 협심증, 심근경색의 네 단계로 표지된 환자의 혈액 샘플로부터 제작한 (주)제노프라의 3K 압타머칩 데이터를, 일반 DNA 마이크로어레이 분석과 동일한 과정을 거쳐 분류한 결과, 각 단계별 환자샘플이 확연히 구분되는 것을 확인하였다. 분산분석 결과 P-Value를 이용하여 자질 선택을 수행하고, 분류 알고리즘으로는 신경망, 결정트리, SVM, 베이지안망을 적용한 결과. 각 알고리즘별로 50대 남성환자 31개의 샘플에 대하여 $77{\sim}100%$의 정확도로 심혈관 질환의 단계를 구분해내었다.

  • PDF

A Study of Korean Semantic Role Labeling using Word Sense (의미 정보를 이용한 한국어 의미역 인식 연구)

  • Lim, Soojong;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.18-22
    • /
    • 2015
  • 기계학습 기반의 의미역 인식에서 주로 어휘, 구문 정보가 자질로 주로 쓰이지만, 의미 정보를 분석하는 의미역 인식은 단어의 의미 정보 또한 매우 주요한 정보이다. 그러나, 기존 연구에서는 의미 정보를 활용할 수 있는 방법이 제한되어 있기 때문에, 소수의 연구만 진행되었다. 본 논문에서는 동형이의어 수준의 의미 애매성 해소 기술, 고유 명사에 대한 개체명 인식 기술, 의미 정보에 기반한 필터링, 유의어 사전을 이용한 클러스터 및 기존 프레임 정보를 확장하는 방법을 제안한다. 제안하는 방법은 기존 연구 대비 뉴스 도메인인 Korean Propbank는 3.14, 위키피디아 문서 기반의 WiseQA 평가셋인 GS 3.0에서는 6.57의 성능 향상을 보였다.

  • PDF

Korean Coreference Resolution using the Deep Learning based Mention Pair Model (딥 러닝 기반의 멘션 페어 모델을 이용한 한국어 상호참조해결)

  • Park, Cheon-Eum;Choi, Gyeong-Ho;Lee, Chang-Ki
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.824-827
    • /
    • 2015
  • 최근 자연어처리에 딥 러닝이 적용되고 있다. 딥 러닝은 기존의 기계학습 방법들과 달리, 자질 추출 및 조합 등과 같이 사람이 직접 수행해야 했던 부분들을 자동으로 처리할 수 있는 장점이 있다. 본 논문에서는 기존 상호참조해결에 적용했던 SVM 대신 딥 러닝을 이용할 것을 제안한다. 실험결과, 딥 러닝을 이용한 시스템의 성능이 57.96%로 SVM을 이용한 것보다 약 9.6%만큼 높았다.

Analysis of Sentential Paraphrase Patterns and Errors through Predicate-Argument Tuple-based Approximate Alignment (술어-논항 튜플 기반 근사 정렬을 이용한 문장 단위 바꿔쓰기표현 유형 및 오류 분석)

  • Choi, Sung-Pil;Song, Sa-Kwang;Myaeng, Sung-Hyon
    • The KIPS Transactions:PartB
    • /
    • v.19B no.2
    • /
    • pp.135-148
    • /
    • 2012
  • This paper proposes a model for recognizing sentential paraphrases through Predicate-Argument Tuple (PAT)-based approximate alignment between two texts. We cast the paraphrase recognition problem as a binary classification by defining and applying various alignment features which could effectively express the semantic relatedness between two sentences. Experiment confirmed the potential of our approach and error analysis revealed various paraphrase patterns not being solved by our system, which can help us devise methods for further performance improvement.

A Simultaneous Recognition Technology of Named Entities and Objects for a Dialogue Based Private Secretary Software (대화형 개인 비서 시스템을 위한 하이브리드 방식의 개체명 및 문장목적 동시 인식기술)

  • Lee, ChangSu;Ko, YoungJoong
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.18-23
    • /
    • 2013
  • 기존 대화시스템과 달리 대화형 개인 비서 시스템은 사용자에게 정보를 제공하기 위해 앱(APP)을 구동하는 방법을 사용한다. 사용자가 앱을 통해 정보를 얻고자 할 때, 사용자가 필요로 하는 정보를 제공해주기 위해서는 사용자의 목적을 정확하게 인식하는 작업이 필요하다. 그 작업 중 중요한 두 요소는 개체명 인식과 문장목적 인식이다. 문장목적 인식이란, 사용자의 문장을 분석해 하나의 앱에 존재하는 여러 정보 중 사용자가 원하는 정보(문장의 목적)가 무엇인지 찾아주는 인식작업이다. 이러한 인식시스템을 구축하는 방법 중 대표적인 방법은 사전규칙방법과 기계학습방법이다. 사전규칙은 사전정보와 규칙을 적용하는 방법으로, 시간이 지남에 따라 새로운 규칙을 추가해야하는 문제가 있으며, 규칙이 일반화되지 않을 경우 오류가 증가하는 문제가 있다. 또 두 인식작업을 파이프라인 방식으로 적용 할 경우, 개체명 인식단계에서의 오류를 가지고 문장목적 인식단계로 넘어가기 때문에 두 단계에 걸친 성능저하와 속도저하를 초래할 수 있다. 이러한 문제점을 해결하기 위해 우리는 통계기반의 기계학습방법인 Conditional Random Fields(CRF)를 사용한다. 또한 사전정보를 CRF와 결합함으로써, 단독으로 수행하는 CRF방식의 성능을 개선시킨다. 개체명과 문장목적인식의 구조를 분석한 결과, 비슷한 자질을 사용할 수 있다고 판단하여, 두 작업을 동시에 수행하는 방법을 제안한다. 실험결과, 사전규칙방법보다 제안한 방법이 문장단위 2.67% 성능개선을 보였다.

  • PDF

A Korean Community-based Question Answering System Using Multiple Machine Learning Methods (다중 기계학습 방법을 이용한 한국어 커뮤니티 기반 질의-응답 시스템)

  • Kwon, Sunjae;Kim, Juae;Kang, Sangwoo;Seo, Jungyun
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1085-1093
    • /
    • 2016
  • Community-based Question Answering system is a system which provides answers for each question from the documents uploaded on web communities. In order to enhance the capacity of question analysis, former methods have developed specific rules suitable for a target region or have applied machine learning to partial processes. However, these methods incur an excessive cost for expanding fields or lead to cases in which system is overfitted for a specific field. This paper proposes a multiple machine learning method which automates the overall process by adapting appropriate machine learning in each procedure for efficient processing of community-based Question Answering system. This system can be divided into question analysis part and answer selection part. The question analysis part consists of the question focus extractor, which analyzes the focused phrases in questions and uses conditional random fields, and the question type classifier, which classifies topics of questions and uses support vector machine. In the answer selection part, the we trains weights that are used by the similarity estimation models through an artificial neural network. Also these are a number of cases in which the results of morphological analysis are not reliable for the data uploaded on web communities. Therefore, we suggest a method that minimizes the impact of morphological analysis by using character features in the stage of question analysis. The proposed system outperforms the former system by showing a Mean Average Precision criteria of 0.765 and R-Precision criteria of 0.872.