• Title/Summary/Keyword: 기계학습 분류

Search Result 840, Processing Time 0.028 seconds

Document Autoclustering for Web Agent (웹 에이전트를 위한 문서 자동 분류)

  • 양찬범;박영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.54-56
    • /
    • 1999
  • 웹 에이전트는 사용자가 웹을 브라우징하는 행위를 모니터하여 사용자의 관심정보를 학습하고 사용자가 필요로 한느 웹 상의 정보를 제공하는 시스템이다. 웹 에이전트는 사용자의 관심정보를 추출하기 위해서 귀납적 기계학습을 수행한다. 이때, 학습의 효율을 높이기 위해서는 관련이 있는 문서들을 그룹화하여 학습 시스템에 제공하여야 한다. 본 논문에서는 비감독 개념 학습 알고리즘인 COBWEB을 이용하여 사용자가 관심을 표시한 문서들의 분류트리를 생성한다. 분류트리는 귀납적 기계학습 시스템의 입력으로 사용될 수 있는 형태가 아니므로 분류 트리의 분석과 문서 분류 후처리 작업을 통해서 문서 집합을 생성해야 한다. 이를 위해서는 분류트리를 분석하여 초기 클러스터를 생성하고, 유사한 클러스터들의 병합을 수행한다. 본 논문에서 제안하는 문서 자동 분류 방식은 비감독 개념 학습 알고리즘이 생성한 문서 분류 트리의 분석을 통해서 충분한 유사도와 적절한 수의 문서를 포함하는 초기 클러스터를 생성할 수 있다. 그러므로 문서 분류의 후처리 작업인 클러스터의 병합 작업에서 불필요한 작업을 제거함으로서 보다 효과적이고 합리적인 문서 분류 작업을 수행한다.

  • PDF

Incremental Superised Learning based on SVM with Unlabeled Documents (레이블이 없는 문서를 이용한 SVM 기반의 점증적 지도학습)

  • 김수영;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.301-303
    • /
    • 2002
  • 컴퓨터가 널리 보급되고 인터넷이 발전함에 따라 수없이 많은 정보가 디지털 형태로 생산되고 있다. 이러한 정보를 사람이 일일이 가공하고 분류하기에는 한계가 있으므로 자동으로 문서를 분류하고자 하는 연구가 대두되었다. 문서를 자동으로 분류하기 위해 기계학습 방법이 많이 이용되고 있다. 기계학습방법을 이용한 문서분류가 좋은 성능을 내기 위해서는 충분한 양의 학습데이터가 필요하다. 학습데이터를 만들기 위해서는 사람이 일일이 분류해야 하므로, 비용이 많이 든다. 본 논문에서는 적은양의 labeled 데이터로부터 시작하여, 점증적으로 unlabeled 데이터를 학습에 참여시킴으로써, 문서분류의 성능을 높이고자 한다. 실험을 통해 Unlabeled 문서데이터를 사용한 것이 좋은 성능을 보였음을 알 수 있다.

  • PDF

Standard Industrial Classification in Short Sentence Based on Machine Learning Approach (기계학습 기반 단문에서의 문장 분류 방법을 이용한 한국표준산업분류)

  • Oh, Kyo-Joong;Choi, Ho-Jin;An, Hweongak
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.394-398
    • /
    • 2020
  • 산업/직업분류 자동코딩시스템은 고용조사 등을 함에 있어 사업체 정보, 업무, 직급, 부서명 등 사용자의 다양한 입력을 표준 산업/직업분류에 맞춰 코드 정보를 제공해주는 시스템이다. 입력 데이터로부터 비지도학습 기반의 색인어 추출 모델을 학습하고, 부분단어 임베딩이 적용된 색인어 임베딩 모델을 통해 입력 벡터를 추출 후, 출력 분류 코드를 인코딩하여 지도학습 모델에서 학습하는 방법을 적용하였다. 기존 시스템의 분류 결과 데이터를 통해 대, 중, 소, 세분류에서 높은 정확도의 모델을 구축할 수 있으며, 기계학습 기술의 적용이 가능한 시스템임을 알 수 있다.

  • PDF

Effective Korean Speech-act Classification Using the Classification Priority Application and a Post-correction Rules (분류 우선순위 적용과 후보정 규칙을 이용한 효과적인 한국어 화행 분류)

  • Song, Namhoon;Bae, Kyoungman;Ko, Youngjoong
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.80-86
    • /
    • 2016
  • A speech-act is a behavior intended by users in an utterance. Speech-act classification is important in a dialogue system. The machine learning and rule-based methods have mainly been used for speech-act classification. In this paper, we propose a speech-act classification method based on the combination of support vector machine (SVM) and transformation-based learning (TBL). The user's utterance is first classified by SVM that is preferentially applied to categories with a low utterance rate in training data. Next, when an utterance has negative scores throughout the whole of the categories, the utterance is applied to the correction phase by rules. The results from our method were higher performance over the baseline system long with error-reduction.

Classifying Windows Executables using API-based Information and Machine Learning (API 정보와 기계학습을 통한 윈도우 실행파일 분류)

  • Cho, DaeHee;Lim, Kyeonghwan;Cho, Seong-je;Han, Sangchul;Hwang, Young-sup
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1325-1333
    • /
    • 2016
  • Software classification has several applications such as copyright infringement detection, malware classification, and software automatic categorization in software repositories. It can be also employed by software filtering systems to prevent the transmission of illegal software. If illegal software is identified by measuring software similarity in software filtering systems, the average number of comparisons can be reduced by shrinking the search space. In this study, we focused on the classification of Windows executables using API call information and machine learning. We evaluated the classification performance of machine learning-based classifier according to the refinement method for API information and machine learning algorithm. The results showed that the classification success rate of SVM (Support Vector Machine) with PolyKernel was higher than other algorithms. Since the API call information can be extracted from binary executables and machine learning-based classifier can identify tampered executables, API call information and machine learning-based software classifiers are suitable for software filtering systems.

Improving learning outcome prediction method by applying Markov Chain (Markov Chain을 응용한 학습 성과 예측 방법 개선)

  • Chul-Hyun Hwang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.595-600
    • /
    • 2024
  • As the use of artificial intelligence technologies such as machine learning increases in research fields that predict learning outcomes or optimize learning pathways, the use of artificial intelligence in education is gradually making progress. This research is gradually evolving into more advanced artificial intelligence methods such as deep learning and reinforcement learning. This study aims to improve the method of predicting future learning performance based on the learner's past learning performance-history data. Therefore, to improve prediction performance, we propose conditional probability applying the Markov Chain method. This method is used to improve the prediction performance of the classifier by allowing the learner to add learning history data to the classification prediction in addition to classification prediction by machine learning. In order to confirm the effectiveness of the proposed method, a total of more than 30 experiments were conducted per algorithm and indicator using empirical data, 'Teaching aid-based early childhood education learning performance data'. As a result of the experiment, higher performance indicators were confirmed in cases using the proposed method than in cases where only the classification algorithm was used in all cases.

A Study on Automatic Classification of Record Text Using Machine Learning (기계학습을 이용한 기록 텍스트 자동분류 사례 연구)

  • Kim, Hae Chan Sol;An, Dae Jin;Yim, Jin Hee;Rieh, Hae-Young
    • Journal of the Korean Society for information Management
    • /
    • v.34 no.4
    • /
    • pp.321-344
    • /
    • 2017
  • Research on automatic classification of records and documents has been conducted for a long time. Recently, artificial intelligence technology has been developed to combine machine learning and deep learning. In this study, we first looked at the process of automatic classification of documents and learning method of artificial intelligence. We also discussed the necessity of applying artificial intelligence technology to records management using various cases of machine learning, especially supervised methods. And we conducted a test to automatically classify the public records of the Seoul metropolitan government into BRM using ETRI's Exobrain, based on supervised machine learning method. Through this, we have drawn up issues to be considered in each step in records management agencies to automatically classify the records into various classification schemes.

Synopsis-Based Classification of Movie Genres Using Machine Learning Techniques (기계학습을 이용한 시놉시스 기반 영화장르 분류 기법)

  • Jae-Eon Lee;Gum-Won Hong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.82-85
    • /
    • 2008
  • 고객의 기호와 요구에 부응하는 서비스의 제공을 위해 영화 요소 중 정확한 장르의 분류는 고객의 선택에 있어 중요한 문제이다. 기존의 수작업에 의한 장르 분류는 시간과 비용, 신뢰성 등에서 비효율적이다. 이러한 문제의 해결을 위해 영화 시놉시스(Synopsis) 기반의 기계학습 방법은 효율적인 대안이 될 수 있다. 본 논문에서는 대다수 영화서비스 주체가 보유하고 있는 시놉시스 정보를 기반으로 하여 기계학습을 이용한 영화장르 분류에 관한 하나의 정형화된 방법을 제시한다. 기계학습 Algorithm 중 LibSVM, RandomComittee, LMT, NaiveBayes, PART Algorithm 을 이용하여 Algorithm 별, 장르별 분류 정확도를 측정하여 비교한다.

Automatic Text Categorization Using Hybrid Multiple Model Schemes (하이브리드 다중모델 학습기법을 이용한 자동 문서 분류)

  • 명순희;김인철
    • Journal of the Korean Society for information Management
    • /
    • v.19 no.4
    • /
    • pp.35-51
    • /
    • 2002
  • Inductive learning and classification techniques have been employed in various research and applications that organize textual data to solve the problem of information access. In this study, we develop hybrid model combination methods which incorporate the concepts and techniques for multiple modeling algorithms to improve the accuracy of text classification, and conduct experiments to evaluate the performances of proposed schemes. Boosted stacking, one of the extended stacking schemes proposed in this study yields higher accuracy relative to the conventional model combination methods and single classifiers.

Classification Performance Comparison of Inductive Learning Methods : The Case of Corporate Credit Rating (귀납적 학습방법들의 분류성능 비교 : 기업신용평가의 경우)

  • 이상호;지원철
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.2
    • /
    • pp.1-21
    • /
    • 1998
  • 귀납적 학습방법들의 분류성능을 비교 평가하기 위하여 대표적 분류문제의 하나인 신용평가 문제를 사용하였다. 분류기로서 사용된 귀납적 학습방법론들은 통계학의 다변량 판별분석(MDA), 기계학습 분야의 C4.5, 신경망의 다계층 퍼셉트론(MLP) 및 Cascade Correlation Network(CCN)의 4 가지이며, 학습자료로는 국내 3개 신용평가기관이 발표한 신용등급 및 공포된 재무제표를 사용하였다. 신용등급 예측의 정확도에 의한 분류성능을 평가하였는데 연도별 평가와 시계열 평가의 두 가지를 실시하였다. Cascade Correlation Network이 가장 좋은 분류성능을 보였지만 4가지 분류기들 사이에 통계적으로 유의한 차이는 발견되지 않았다. 이는 사용된 학습자료가 갖는 한계로 인한 것으로 추정되지만, 성능평가 과정에 있어 학습자료의 전처리 과정이 분류성과의 제고에 매우 유효함이 입증되었다.

  • PDF