• 제목/요약/키워드: 기계학습 분류

검색결과 840건 처리시간 0.028초

웹 에이전트를 위한 문서 자동 분류 (Document Autoclustering for Web Agent)

  • 양찬범;박영택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.54-56
    • /
    • 1999
  • 웹 에이전트는 사용자가 웹을 브라우징하는 행위를 모니터하여 사용자의 관심정보를 학습하고 사용자가 필요로 한느 웹 상의 정보를 제공하는 시스템이다. 웹 에이전트는 사용자의 관심정보를 추출하기 위해서 귀납적 기계학습을 수행한다. 이때, 학습의 효율을 높이기 위해서는 관련이 있는 문서들을 그룹화하여 학습 시스템에 제공하여야 한다. 본 논문에서는 비감독 개념 학습 알고리즘인 COBWEB을 이용하여 사용자가 관심을 표시한 문서들의 분류트리를 생성한다. 분류트리는 귀납적 기계학습 시스템의 입력으로 사용될 수 있는 형태가 아니므로 분류 트리의 분석과 문서 분류 후처리 작업을 통해서 문서 집합을 생성해야 한다. 이를 위해서는 분류트리를 분석하여 초기 클러스터를 생성하고, 유사한 클러스터들의 병합을 수행한다. 본 논문에서 제안하는 문서 자동 분류 방식은 비감독 개념 학습 알고리즘이 생성한 문서 분류 트리의 분석을 통해서 충분한 유사도와 적절한 수의 문서를 포함하는 초기 클러스터를 생성할 수 있다. 그러므로 문서 분류의 후처리 작업인 클러스터의 병합 작업에서 불필요한 작업을 제거함으로서 보다 효과적이고 합리적인 문서 분류 작업을 수행한다.

  • PDF

레이블이 없는 문서를 이용한 SVM 기반의 점증적 지도학습 (Incremental Superised Learning based on SVM with Unlabeled Documents)

  • 김수영;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.301-303
    • /
    • 2002
  • 컴퓨터가 널리 보급되고 인터넷이 발전함에 따라 수없이 많은 정보가 디지털 형태로 생산되고 있다. 이러한 정보를 사람이 일일이 가공하고 분류하기에는 한계가 있으므로 자동으로 문서를 분류하고자 하는 연구가 대두되었다. 문서를 자동으로 분류하기 위해 기계학습 방법이 많이 이용되고 있다. 기계학습방법을 이용한 문서분류가 좋은 성능을 내기 위해서는 충분한 양의 학습데이터가 필요하다. 학습데이터를 만들기 위해서는 사람이 일일이 분류해야 하므로, 비용이 많이 든다. 본 논문에서는 적은양의 labeled 데이터로부터 시작하여, 점증적으로 unlabeled 데이터를 학습에 참여시킴으로써, 문서분류의 성능을 높이고자 한다. 실험을 통해 Unlabeled 문서데이터를 사용한 것이 좋은 성능을 보였음을 알 수 있다.

  • PDF

기계학습 기반 단문에서의 문장 분류 방법을 이용한 한국표준산업분류 (Standard Industrial Classification in Short Sentence Based on Machine Learning Approach)

  • 오교중;최호진;안현각
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.394-398
    • /
    • 2020
  • 산업/직업분류 자동코딩시스템은 고용조사 등을 함에 있어 사업체 정보, 업무, 직급, 부서명 등 사용자의 다양한 입력을 표준 산업/직업분류에 맞춰 코드 정보를 제공해주는 시스템이다. 입력 데이터로부터 비지도학습 기반의 색인어 추출 모델을 학습하고, 부분단어 임베딩이 적용된 색인어 임베딩 모델을 통해 입력 벡터를 추출 후, 출력 분류 코드를 인코딩하여 지도학습 모델에서 학습하는 방법을 적용하였다. 기존 시스템의 분류 결과 데이터를 통해 대, 중, 소, 세분류에서 높은 정확도의 모델을 구축할 수 있으며, 기계학습 기술의 적용이 가능한 시스템임을 알 수 있다.

  • PDF

분류 우선순위 적용과 후보정 규칙을 이용한 효과적인 한국어 화행 분류 (Effective Korean Speech-act Classification Using the Classification Priority Application and a Post-correction Rules)

  • 송남훈;배경만;고영중
    • 정보과학회 논문지
    • /
    • 제43권1호
    • /
    • pp.80-86
    • /
    • 2016
  • 화행이란 발화 속에 포함되어 있는 화자에 의해 의도된 언어적 행위이다. 대화 시스템에서 입력된 발화에 적합한 화행을 분류하는 것은 중요하다. 기존의 화행분류에 관한 연구는 규칙기반과 기계학습 기반의 방법을 많이 사용한다. 본 논문에서는 대표적인 기계학습 방법인 지지벡터기계(SVM)와 변환기반 학습(TBL)을 조합한 화행 분류 방법을 제안한다. 이를 위해, 화행별 학습 발화의 수에 기반하여 분류 우선순위를 조정함으로써 지지벡터기계의 분류 편향 문제를 해결하였고, 오답일 확률이 높은 분류 결과에 대해서 변환 기반 학습을 통해 생성된 보정 규칙을 적용함으로써 화행분류 성능을 개선하는 방법을 제안한다. 본 논문에서 화행별 학습 발화 수의 차이를 고려한 분류 우선순위 변화와 후보정 규칙을 이용한 화행분류 방법을 실험을 통해 평가하였으며, 이는 학습 발화 수가 낮은 화행의 우선순위를 고려하지 않은 기존의 화행 분류보다 성능이 향상되었다.

API 정보와 기계학습을 통한 윈도우 실행파일 분류 (Classifying Windows Executables using API-based Information and Machine Learning)

  • 조대희;임경환;조성제;한상철;황영섭
    • 정보과학회 논문지
    • /
    • 제43권12호
    • /
    • pp.1325-1333
    • /
    • 2016
  • 소프트웨어 분류 기법은 저작권 침해 탐지, 악성코드의 분류, 소프트웨어 보관소의 소프트웨어 자동분류 등에 활용할 수 있으며, 불법 소프트웨어의 전송을 차단하기 위한 소프트웨어 필터링 시스템에도 활용할 수 있다. 소프트웨어 필터링 시스템에서 유사도 측정을 통해 불법 소프트웨어를 식별할 경우, 소프트웨어 분류를 활용하여 탐색 범위를 축소하면 평균 비교 횟수를 줄일 수 있다. 본 논문은 API 호출 정보와 기계학습을 통한 윈도우즈 실행파일 분류를 연구한다. 다양한 API 호출 정보 정제 방식과 기계학습 알고리즘을 적용하여 실행파일 분류 성능을 평가한다. 실험 결과, PolyKernel을 사용한 SVM (Support Vector Machine)이 가장 높은 성공률을 보였다. API 호출 정보는 바이너리 실행파일에서 추출할 수 있는 정보이며, 기계학습을 적용하여 변조 프로그램을 식별하고 실행파일의 빠른 분류가 가능하다. 그러므로 API 호출 정보와 기계학습에 기반한 소프트웨어 분류는 소프트웨어 필터링 시스템에 활용하기에 적당하다.

Markov Chain을 응용한 학습 성과 예측 방법 개선 (Improving learning outcome prediction method by applying Markov Chain)

  • 황철현
    • 문화기술의 융합
    • /
    • 제10권4호
    • /
    • pp.595-600
    • /
    • 2024
  • 학습 성과를 예측하거나 학습 경로를 최적화하는 연구 분야에서 기계학습과 같은 인공지능 기술의 사용이 점차 증가하면서 교육 분야의 인공지능 활용은 점차 많은 진전을 보이고 있다. 이러한 연구는 점차 심층학습과 강화학습과 같은 좀 더 고도화된 인공지능 방법으로 진화하고 있다. 본 연구는 학습자의 과거 학습 성과-이력 데이터를 기반으로 미래의 학습 성과를 예측하는 방법을 개선하는 것이다. 따라서 예측 성능을 높이기 위해 Markov Chain 방법을 응용한 조건부 확률을 제안한다. 이 방법은 기계학습에 의한 분류 예측에 추가하여 학습자가 학습 이력 데이터를 분류 예측에 추가함으로써 분류기의 예측 성능을 향상 시키기 위해 사용된다. 제안 방법의 효과를 확인하기 위해서 실증 데이터인 '교구 기반의 유아 교육 학습 성과 데이터'를 활용하여 기존의 분류 알고리즘과 제안 방법에 의한 분류 성능 지표를 비교하는 실험을 수행하였다. 실험 결과, 분류 알고리즘만 단독 사용한 사례보다 제안 방법에 의한 사례에서 더 높은 성능 지표를 산출한다는 것을 확인할 수 있었다.

기계학습을 이용한 기록 텍스트 자동분류 사례 연구 (A Study on Automatic Classification of Record Text Using Machine Learning)

  • 김해찬솔;안대진;임진희;이해영
    • 정보관리학회지
    • /
    • 제34권4호
    • /
    • pp.321-344
    • /
    • 2017
  • 기록이나 문헌의 자동분류에 관한 연구는 오래 전부터 시작되었다. 최근에는 인공지능 기술이 발전하면서 기계학습이나 딥러닝을 접목한 연구로 발전되고 있다. 이 연구에서는 우선 문헌의 자동분류와 인공지능의 학습방식이 발전해 온 과정을 살펴보았다. 또 기계학습 중 특히 지도학습 방식의 특징과 다양한 사례를 통해 기록관리 분야에 인공지능 기술을 적용해야 할 필요성에 대해 알아보았다. 그리고 실제로 지도학습 방식으로 서울시의 결재문서를 ETRI의 엑소브레인을 통해 정부기능분류체계로 자동분류해 보았다. 이를 통해 기록을 다양한 방식의 분류체계로 자동분류하기 위한 각 과정의 고려사항을 도출하였다.

기계학습을 이용한 시놉시스 기반 영화장르 분류 기법 (Synopsis-Based Classification of Movie Genres Using Machine Learning Techniques)

  • 이재언;홍금원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.82-85
    • /
    • 2008
  • 고객의 기호와 요구에 부응하는 서비스의 제공을 위해 영화 요소 중 정확한 장르의 분류는 고객의 선택에 있어 중요한 문제이다. 기존의 수작업에 의한 장르 분류는 시간과 비용, 신뢰성 등에서 비효율적이다. 이러한 문제의 해결을 위해 영화 시놉시스(Synopsis) 기반의 기계학습 방법은 효율적인 대안이 될 수 있다. 본 논문에서는 대다수 영화서비스 주체가 보유하고 있는 시놉시스 정보를 기반으로 하여 기계학습을 이용한 영화장르 분류에 관한 하나의 정형화된 방법을 제시한다. 기계학습 Algorithm 중 LibSVM, RandomComittee, LMT, NaiveBayes, PART Algorithm 을 이용하여 Algorithm 별, 장르별 분류 정확도를 측정하여 비교한다.

하이브리드 다중모델 학습기법을 이용한 자동 문서 분류 (Automatic Text Categorization Using Hybrid Multiple Model Schemes)

  • 명순희;김인철
    • 정보관리학회지
    • /
    • 제19권4호
    • /
    • pp.35-51
    • /
    • 2002
  • 본 논문에서는 다중 모델 기계학습 기법을 이용하여 자동 문서 분류의 성능과 신뢰도를 향상시킬 수 있는 연구와 실험 결과를 기술하였다. 기존의 다중 모델 기계 학습법들이 훈련 데이터 또는 학습 알고리즘의 편향에 의한 오류를 극복하고자 한 것인데 비해 본 논문에서 제안한 메타 학습을 이용한 하이브리드 다중 모델 방식은 이 두 가지의 오류 원인을 동시에 해소하고자 하였다. 다양한 문서 집합에 대한 실험 결과. 본 논문에서 제안한 하이브리드 다중 모델 학습법이 전반적으로 기존의 일반 다중모델 학습법들에 비해 높은 성능을 보였으며, 다중 모델의 결합 방식으로서 메타 학습이 투표 방식에 비해 효율적인 것으로 나타났다.

귀납적 학습방법들의 분류성능 비교 : 기업신용평가의 경우 (Classification Performance Comparison of Inductive Learning Methods : The Case of Corporate Credit Rating)

  • 이상호;지원철
    • 지능정보연구
    • /
    • 제4권2호
    • /
    • pp.1-21
    • /
    • 1998
  • 귀납적 학습방법들의 분류성능을 비교 평가하기 위하여 대표적 분류문제의 하나인 신용평가 문제를 사용하였다. 분류기로서 사용된 귀납적 학습방법론들은 통계학의 다변량 판별분석(MDA), 기계학습 분야의 C4.5, 신경망의 다계층 퍼셉트론(MLP) 및 Cascade Correlation Network(CCN)의 4 가지이며, 학습자료로는 국내 3개 신용평가기관이 발표한 신용등급 및 공포된 재무제표를 사용하였다. 신용등급 예측의 정확도에 의한 분류성능을 평가하였는데 연도별 평가와 시계열 평가의 두 가지를 실시하였다. Cascade Correlation Network이 가장 좋은 분류성능을 보였지만 4가지 분류기들 사이에 통계적으로 유의한 차이는 발견되지 않았다. 이는 사용된 학습자료가 갖는 한계로 인한 것으로 추정되지만, 성능평가 과정에 있어 학습자료의 전처리 과정이 분류성과의 제고에 매우 유효함이 입증되었다.

  • PDF