• 제목/요약/키워드: 기계학습 모델

검색결과 1,154건 처리시간 0.03초

적대적 머신러닝 공격과 방어기법 (A Study Adversarial machine learning attacks and defenses)

  • 이제민;박재경
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.621-623
    • /
    • 2023
  • 본 논문에서는 기계 학습 모델의 취약점과 대응책에 초점을 맞추어 적대적인 기계 학습 공격 및 방어 분야를 탐구한다. 신중하게 만들어진 입력 데이터를 도입하여 기계 학습 모델을 속이거나 조작하는 것을 목표로 하는 적대적 공격에 대한 심층 분석을 제공한다. 이 논문은 회피 및 독성 공격을 포함한 다양한 유형의 적대적 공격을 조사하고 기계 학습 시스템의 안정성과 보안에 대한 잠재적 영향을 조사한다. 또한 적대적 공격에 대한 기계 학습 모델의 견고성을 향상시키기 위해 다양한 방어 메커니즘과 전략을 제안하고 평가한다. 본 논문은 광범위한 실험과 분석을 통해 적대적 기계 학습에 대한 이해에 기여하고 효과적인 방어 기술에 대한 통찰력을 제공하는 것을 목표로 한다.

  • PDF

기계학습 활용을 위한 학습 데이터세트 구축 표준화 방안에 관한 연구 (A study on the standardization strategy for building of learning data set for machine learning applications)

  • 최정열
    • 디지털융복합연구
    • /
    • 제16권10호
    • /
    • pp.205-212
    • /
    • 2018
  • 고성능 CPU/GPU의 개발과 심층신경망 등의 인공지능 알고리즘, 그리고 다량의 데이터 확보를 통해 기계학습이 다양한 응용 분야로 확대 적용되고 있다. 특히, 사물인터넷, 사회관계망서비스, 웹페이지, 공공데이터로부터 수집된 다량의 데이터들이 기계학습의 활용에 가속화를 가하고 있다. 기계학습을 위한 학습 데이터세트는 응용 분야와 데이터 종류에 따라 다양한 형식으로 존재하고 있어 효과적으로 데이터를 처리하고 기계학습에 적용하기에 어려움이 따른다. 이에 본 논문은 표준화된 절차에 따라 기계학습을 위한 학습 데이터세트를 구축하기 위한 방안을 연구하였다. 먼저 학습 데이터세트가 갖추어야할 요구사항을 문제 유형과 데이터 유형별로 분석하였다. 이를 토대로 기계학습 활용을 위한 학습 데이터세트 구축에 관한 참조모델을 제안하였다. 또한 학습 데이터세트 구축 참조모델을 국제 표준으로 개발하기 위해 대상 표준화 기구의 선정 및 표준화 전략을 제시하였다.

가설적 모델의 기계학습을 이용한 연속시간 동적시스템 모델링 프레임워크 (Modeling Framework for Continuous Dynamic Systems Using Machine Learning of Hypothetical Model)

  • 송해상;김탁곤
    • 한국시뮬레이션학회논문지
    • /
    • 제32권1호
    • /
    • pp.13-21
    • /
    • 2023
  • 본 논문은 실제 시스템의 빅데이터가 확보되었고 시스템에 대한 정보를 일부 알고 있을 때 파라미터를 가진 그레이박스 혹은 블랙박스 형태의 가설모델을 설정하고 기계학습을 통해 모델을 자동 생성하는 기법을 제안하였다. 제안된 프레임워크를 구현하고 다양한 가설모델에 대한 실험을 통해 학습된 모델의 정합도와 가설모델의 학습에 소요되는 비용에 대해 분석하였다. 실험결과 제안된 가설모델 기반 기계학습 기법으로 상미분방정식으로 기술될 수 있은 연속시스템의 그레이박스 혹은 화이트 박스 가설모델과 주어진 빅데이터를 이용하여 모델링을 했을 때 상당히 좋은 성능과 정확도를 보인 모델을 찾아낼 수 있음을 확인하였다. 이 기법은 최근 생성된 빅데이터를 이용하여 디지털트윈 모델의 일치성을 자동 갱신하거나 새로운 입력에 대한 출력을 예측하는 목적으로도 잘 활용될 수 있을 것으로 기대된다.

Nonstandard Machine Learning Algorithms for Microarray Data Mining

  • Zhang, Byoung-Tak
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2001년도 제2회 생물정보 워크샵 (DNA Chip Bioinformatics)
    • /
    • pp.165-196
    • /
    • 2001
  • DNA chip 또는 microarray는 다수의 유전자 또는 유전자 조각을 (보통 수천내지 수만 개)칩상에 고정시켜 놓고 DNA hybridization 반응을 이용하여 유전자들의 발현 양상을 분석할 수 있는 기술이다. 이러한 high-throughput기술은 예전에는 생각하지 못했던 여러가지 분자생물학의 문제에 대한 해답을 제시해 줄 수 있을 뿐 만 아니라, 분자수준에서의 질병 진단, 신약 개발, 환경 오염 문제의 해결 등 그 응용 가능성이 무한하다. 이 기술의 실용적인 적용을 위해서는 DNA chip을 제작하기 위한 하드웨어/웻웨어 기술 외에도 이러한 데이터로부터 최대한 유용하고 새로운 지식을 창출하기 위한 bioinformatics 기술이 핵심이라고 할 수 있다. 유전자 발현 패턴을 데이터마이닝하는 문제는 크게 clustering, classification, dependency analysis로 구분할 수 있으며 이러한 기술은 통계학과인공지능 기계학습에 기반을 두고 있다. 주로 사용된 기법으로는 principal component analysis, hierarchical clustering, k-means, self-organizing maps, decision trees, multilayer perceptron neural networks, association rules 등이다. 본 세미나에서는 이러한 기본적인 기계학습 기술 외에 최근에 연구되고 있는 새로운 학습 기술로서 probabilistic graphical model (PGM)을 소개하고 이를 DNA chip 데이터 분석에 응용하는 연구를 살펴본다. PGM은 인공신경망, 그래프 이론, 확률 이론이 결합되어 형성된 기계학습 모델로서 인간 두뇌의 기억과 학습 기작에 기반을 두고 있으며 다른 기계학습 모델과의 큰 차이점 중의 하나는 generative model이라는 것이다. 즉 일단 모델이 만들어지면 이것으로부터 새로운 데이터를 생성할 수 있는 능력이 있어서, 만들어진 모델을 검증하고 이로부터 새로운 사실을 추론해 낼 수 있어 biological data mining 문제에서와 같이 새로운 지식을 발견하는 exploratory analysis에 적합하다. 또한probabilistic graphical model은 기존의 신경망 모델과는 달리 deterministic한의사결정이 아니라 확률에 기반한 soft inference를 하고 학습된 모델로부터 관련된 요인들간의 인과관계(causal relationship) 또는 상호의존관계(dependency)를 분석하기에 적합한 장점이 있다. 군체적인 PGM 모델의 예로서, Bayesian network, nonnegative matrix factorization (NMF), generative topographic mapping (GTM)의 구조와 학습 및 추론알고리즘을소개하고 이를 DNA칩 데이터 분석 평가 대회인 CAMDA-2000과 CAMDA-2001에서 사용된cancer diagnosis 문제와 gene-drug dependency analysis 문제에 적용한 결과를 살펴본다.

  • PDF

컴퓨터 비전 정확도 향상을 위한 시뮬레이션 기반 가상 데이터 생성기법 (Virtual Data Generation Method based on Simulation to Improve Accuracy of Computer Vision)

  • 강지수;최창범;장한얼
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.390-392
    • /
    • 2022
  • 기계학습 분야에서 모델을 학습시키려면 많은 양의 데이터가 필요하다. 최근에는 컴퓨터 비전 분야에서 데이터가 적은 환경에서 모델을 학습하는 다양한 방법들이 소개되고 있다. 하지만 대부분의 방법을 사용하기 위해서는 어느 정도 최소한의 학습 데이터가 필요하기 때문에 극심하게 데이터가 부족한 환경에서는 사용하기 어렵다. 본 논문에서는 컴퓨터 비전 분야에서 기계학습을 사용할 때 극심하게 데이터가 부족한 환경에서 시뮬레이션 도구를 활용한 인조 데이터 생성 방법을 제안한다. 실험 결과를 통해 시뮬레이션 도구를 활용하여 생성한 인조 데이터로 학습한 모델이 실제 데이터만을 학습한 모델을 대체할 수 있음을 확인하였고, F-1 점수와 정확도가 향상함을 실험적으로 확인하였다.

프라이버시 보존 데이터 학습을 위한 고효율 동형 암호 기법 (High-Efficiency Homomorphic Encryption Techniques for Privacy-Preserving Data Learning)

  • 심혜연;전유란;이일구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.419-422
    • /
    • 2024
  • 최근 인공지능 기술의 발전과 함께 기계학습과 빅데이터를 융합한 서비스가 증가하게 되었고, 무분별한 데이터 수집과 학습으로 인한 개인정보 유출 위험도가 커졌다. 따라서 프라이버시를 보호하면서 기계학습을 수행할 수 있는 기술이 중요해졌다. 동형암호 기술은 정보 주체자의 개인정보 기밀성을 유지하면서 기계학습을 할 수 있는 방법 중 하나이다. 그러나 평문 크기에 비례하여 암호문 크기와 연산 결과의 노이즈가 커지는 동형암호의 특징으로 인해 기계학습 모델의 예측 정확도가 감소하고 학습 시간이 오래 소요되는 문제가 발생한다. 본 논문에서는 부분 동형암호화된 데이터셋으로 로지스틱 회귀 모델을 학습할 수 있는 기법을 제안한다. 실험 결과에 따르면 제안하는 기법이 종래 기법보다 예측 정확도를 59.4% 향상시킬 수 있었고, 학습 소요 시간을 63.6% 개선할 수 있었다.

기계학습 알고리즘을 이용한 스마트 온실 내부온도 예측 모델 개발 및 검증 (Development and Verification of Smart Greenhouse Internal Temperature Prediction Model Using Machine Learning Algorithm)

  • 오광철;김석준;박선용;이충건;조라훈;전영광;김대현
    • 생물환경조절학회지
    • /
    • 제31권3호
    • /
    • pp.152-162
    • /
    • 2022
  • 본 연구는 데이터를 기반으로 한 인공지능 기계학습 기법을 활용하여 온실 내부온도 예측 시뮬레이션 모델을 개발을 수행하였다. 온실 시스템의 내부온도 예측을 위해서 다양한 방법이 연구됐지만, 가외 변인으로 인하여 기존 시뮬레이션 분석방법은 낮은 정밀도의 문제점을 지니고 있다. 이러한 한계점을 극복하기 위하여 최근 개발되고 있는 데이터 기반의 기계학습을 활용하여 온실 내부온도 예측 모델 개발을 수행하였다. 기계학습모델은 데이터 수집, 특성 분석, 학습을 통하여 개발되며 매개변수와 학습방법에 따라 모델의 정확도가 크게 변화된다. 따라서 데이터 특성에 따른 최적의 모델 도출방법이 필요하다. 모델 개발 결과 숨은층 증가에 따라 모델 정확도가 상승하였으며 최종적으로 GRU 알고리즘과 숨은층6에서 r2 0.9848과 RMSE 0.5857℃로 최적 모델이 도출되었다. 본 연구를 통하여 온실 외부 데이터를 활용하여 온실 내부온도 예측 모델 개발이 가능함을 검증하였으며, 추후 다양한 온실데이터에 적용 및 비교분석이 수행되어야 한다. 이후 한 단계 더 나아가 기계학습모델 예측(predicted) 결과를 예보(forecasting)단계로 개선하기 위해서 데이터 시간 길이(sequence length)에 따른 특성 분석 및 계절별 기후변화와 작물에 따른 사례별로 개발 모델을 관리하는 등의 다양한 추가 연구가 수행되어야 한다.

딥러닝 기반의 학습 성취 예측 모델 (Learning Achievement Prediction Model based on Deep Learning)

  • 이명숙;박주건;이주화
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.245-247
    • /
    • 2021
  • 최근 코로나 19로 인하여 온라인 강의가 증가하고 있으며 이를 활용한 학습 분석에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 학습 분석 중 학습 결과에 영향을 미칠 수 있는 학습 활동 데이터를 수집하여 학습 결과를 예측하는 모델을 설계하고자 한다. 예측 모델은 기계학습을 이용하며 이전 학기의 학습 결과 데이터를 학습시켜 학습 결과에 영향을 미치는 학습 활동 데이터를 도출한다. 도출된 데이터를 이용하여 차후 학습자의 학습 결과를 예측한다. 학습 결과를 예측하기 위한 모델로 딥러닝의 DNN을 활용한다. 향후 연구로는 예측한 결과를 바탕으로 학습자의 학습 동기 부여와 학습 지도 방향을 정하는 것이다.

  • PDF

기술문서 분류를 위한 통계기반 기계학습 모델 성능비교 및 한계 연구 (Performance Comparison of Statistics-Based Machine Learning Model for Classification of Technical Documents)

  • 김진구;유헌창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.393-396
    • /
    • 2022
  • 본 연구는 국방과학기술 분야의 특허 및 논문 실적을 이용하여 통계기반 기계학습 모델 4 종을 학습하고, 실제 분석 대상기관의 데이터 입력결과를 분석하여 실용성에 대한 한계점 분석을 목적으로 한다. 기존 연구에서는 특허분류코드를 기준으로 분류하여 특수 목적으로 활용하거나 세부 연구 범위 내 연구 주제탐색 및 특징연구 등 미시적인 관점에서의 상세연구 활용 목적인 반면, 본 연구는 거시적인 관점에서 연구의 전체적인 흐름과 경향성 파악을 목적으로 한다. 이에 ICT 기술 138 종의 특허 및 논문 30,965 건과 국방과학기술 192 종의 특허 및 논문 23,406 건을 학습데이터로 각 모델을 학습하였다. 비교한 통계기반 학습모델은 Support Vector Machines, Decision Tree, Naive Bayes, XGBoost 모델이다. 학습데이터에 대한 학습검증 단계에서는 최대 99.4%의 성능을 보였다. 다만, 실제 분석대상기관의 특허 및 논문 12,824 건으로 입력분석한 결과, 모델별 편향성 문제, 데이터 전처리 이슈, 다중클래스 및 다중레이블 문제를 확인, 도출한 문제에 대한 해결방안을 제시하고 추가 연구의 방향성을 제시한다.

기계학습 기반 단문에서의 문장 분류 방법을 이용한 한국표준산업분류 (Standard Industrial Classification in Short Sentence Based on Machine Learning Approach)

  • 오교중;최호진;안현각
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.394-398
    • /
    • 2020
  • 산업/직업분류 자동코딩시스템은 고용조사 등을 함에 있어 사업체 정보, 업무, 직급, 부서명 등 사용자의 다양한 입력을 표준 산업/직업분류에 맞춰 코드 정보를 제공해주는 시스템이다. 입력 데이터로부터 비지도학습 기반의 색인어 추출 모델을 학습하고, 부분단어 임베딩이 적용된 색인어 임베딩 모델을 통해 입력 벡터를 추출 후, 출력 분류 코드를 인코딩하여 지도학습 모델에서 학습하는 방법을 적용하였다. 기존 시스템의 분류 결과 데이터를 통해 대, 중, 소, 세분류에서 높은 정확도의 모델을 구축할 수 있으며, 기계학습 기술의 적용이 가능한 시스템임을 알 수 있다.

  • PDF