• Title/Summary/Keyword: 기계학습 기반 예측 알고리즘

Search Result 148, Processing Time 0.029 seconds

유전자 알고리즘을 이용한 분류자 앙상블의 최적 선택 (Optimal Selection of Classifier Ensemble Using Genetic Algorithms)

  • 김명종
    • 지능정보연구
    • /
    • 제16권4호
    • /
    • pp.99-112
    • /
    • 2010
  • 앙상블 학습은 분류 및 예측 알고리즘의 성과개선을 위하여 제안된 기계학습 기법이다. 그러나 앙상블 학습은 기저 분류자의 다양성이 부족한 경우 다중공선성 문제로 인하여 성과개선 효과가 미약하고 심지어는 성과가 악화될 수 있다는 문제점이 제기되었다. 본 연구에서는 기저 분류자의 다양성을 확보하고 앙상블 학습의 성과개선 효과를 제고하기 위하여 유전자 알고리즘 기반의 범위 최적화 기법을 제안하고자 한다. 본 연구에서 제안된 최적화 기법을 기업 부실예측 인공신경망 앙상블에 적용한 결과 기저 분류자의 다양성이 확보되고 인공신경망 앙상블의 성과가 유의적으로 개선되었음을 보여주었다.

비대칭 멀티코어 모바일 단말에서 SVM 기반 저전력 스케줄링 기법 (SVM-based Energy-Efficient scheduling on Heterogeneous Multi-Core Mobile Devices)

  • 한민호;고영배;임성화
    • 한국산업정보학회논문지
    • /
    • 제27권6호
    • /
    • pp.69-75
    • /
    • 2022
  • 본 논문에서 비대칭 멀티 코어 구조의 스마트 모바일 단말에서 실시간성 보장과 에너지 소비량 절감을 고려한 작업 스케쥴링 기법을 제안한다. 최근 VR, AR, 3D 등 고성능 응용프로그램은 실시간과 고수준 작업이 요구된다. 스마트 단말은 배터리에 의존적이므로 높은 에너지 효율을 위해서 big.LITTLE 구조가 적용되었지만, 이를 제대로 활용하지 못함으로써 에너지 절감효과가 반감되는 문제점이 있었다. 본 논문에서는 big.LITTLE 구조의 단말에서 실시간성과 높은 에너지 효율을 높일 수 있는 비대칭 멀티코어 할당 기법을 제안한다. 이 기법은 SVM 모델을 활용해서 실제 작업의 실행시간을 예측하고 이를 통해서 에너지 소모와 실행시간을 최적화한 알고리즘을 제안한다. 상용 스마트폰에서의 비교실험을 통하여 제안기법이 기존 기법과 유사한 실행시간을 보장하면서 에너지 소비량의 절감을 보였다.

다변량 지구과학 데이터와 가우시안 혼합 모델을 이용한 공간 분포 추정 (Estimation of Spatial Distribution Using the Gaussian Mixture Model with Multivariate Geoscience Data)

  • 김호림;유순영;윤성택;김경호;이군택;이정호;허철호;류동우
    • 자원환경지질
    • /
    • 제55권4호
    • /
    • pp.353-366
    • /
    • 2022
  • 지구과학 데이터(지오데이터)의 공간 이질성, 희소성 및 고차원성으로 인해 공간 분포 추정에 어려움이 있다. 따라서 지구과학의 많은 응용 분야에서 지오데이터의 고유 특성을 고려할 수 있는 공간 추정 기법이 필요하다. 본 연구에서는 기계 학습 알고리즘 중 하나인 가우시안 혼합 모델(Gaussian Mixture Model; GMM)을 이용하여 공간 예측 방법을 제공하고자 하였다. 제안된 기법의 성능을 검증하기 위해, 옛 제련소 부지에서 휴대용 X선 형광분석기(PXRF) 및 유도결합플라즈마-원자방출분광법(ICP-AES)을 이용하여 분석된 토양 농도 자료를 활용하였다. ICP-AES를 이용해 분석된 As와 Pb를 주변수로 하고, 나머지 자료는 보조변수로 활용하였다. 다차원의 보조변수 중 중요 변수를 선별하기 위해 랜덤포레스트 기반의 변수선택법을 적용하였다. ICP-AES 및 PXRF를 통해 구축된 다변량 데이터를 사용한 GMM의 결과를 단변량 및 이변량 데이터를 사용한 정규 크리깅(Ordinary Kriging; OK) 및 정규 공동크리깅(Ordinary Co-Kriging; OCK)의 결과와 비교하였다. GMM의 결과는 OK 및 OCK의 결과보다 낮은 평균 제곱근 편차(RMSE; 비소는 최대 0.11 및 납은 0.33까지 향상)와 높은 상관관계(r; 비소는 최대 0.31 및 납은 0.46까지 향상)를 제공하였다. 이는 GMM을 사용할 경우 토양 오염의 범위 해석의 성능을 향상시킬 수 있음을 지시한다. 본 연구는 다 변량 공간추정 접근법이 복잡하고 이질적인 지질 및 지구 화학자료의 특징을 이해하는 데 효과적으로 적용될 수 있음을 증명하였다.

XGBoost를 활용한 리스크패리티 자산배분 모형에 관한 연구 (A Study on Risk Parity Asset Allocation Model with XGBoos)

  • 김영훈;최흥식;김선웅
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.135-149
    • /
    • 2020
  • 인공지능을 기반으로 한 다양한 연구들이 현대사회에 많은 변화를 불러일으키고 있다. 금융시장 역시 예외는 아니다. 로보어드바이저 개발이 활발하게 진행되고 있으며 전통적 방식의 단점을 보완하고 사람이 분석하기 어려운 부분을 대체하고 있다. 로보어드바이저는 인공지능 알고리즘으로 자동화된 투자 결정을 내려 다양한 자산배분 모형과 함께 활용되고 있다. 자산배분 모형 중 리스크패리티는 대표적인 위험 기반 자산배분 모형의 하나로 큰 자산을 운용하는 데 있어 안정성을 나타내고 현업에서 역시 널리 쓰이고 있다. 그리고 XGBoost 모형은 병렬화된 트리 부스팅 기법으로 제한된 메모리 환경에서도 수십억 가지의 예제로 확장이 가능할 뿐만 아니라 기존의 부스팅에 비해 학습속도가 매우 빨라 많은 분야에서 널리 활용되고 있다. 이에 본 연구에서 리스크패리티와 XGBoost를 장점을 결합한 모형을 제안하고자 한다. 기존에 널리 사용되는 최적화 자산배분 모형은 과거 데이터를 기반으로 투자 비중을 추정하기 때문에 과거와 실투자 기간 사이의 추정 오차가 발생하게 된다. 최적화 자산배분 모형은 추정 오차로 인해 포트폴리오 성과에서 악영향을 받게 된다. 본 연구는 XGBoost를 통해 실투자 기간의 변동성을 예측하여 최적화 자산배분 모형의 추정 오차를 줄여 모형의 안정성과 포트폴리오 성과를 개선하고자 한다. 본 연구에서 제시한 모형의 실증 검증을 위해 한국 주식시장의 10개 업종 지수 데이터를 활용하여 2003년부터 2019년까지 총 17년간 주가 자료를 활용하였으며 in-sample 1,000개, out-of-sample 20개씩 Moving-window 방식으로 예측 결과값을 누적하여 총 154회의 리밸런싱이 이루어진 백테스팅 결과를 도출하였다. 본 연구에서 제안한 자산배분 모형은 기계학습을 사용하지 않은 기존의 리스크패리티와 비교하였을 때 누적수익률 및 추정 오차에서 모두 개선된 성과를 보여주었다. 총 누적수익률은 45.748%로 리스크패리티 대비 약 5% 높은 결과를 보였고 추정오차 역시 10개 업종 중 9개에서 감소한 결과를 보였다. 실험 결과를 통해 최적화 자산배분 모형의 추정 오차를 감소시킴으로써 포트폴리오 성과를 개선하였다. 포트폴리오의 추정 오차를 줄이기 위해 모수 추정 방법에 관한 다양한 연구 사례들이 존재한다. 본 연구는 추정 오차를 줄이기 위한 새로운 추정방법으로 기계학습을 제시하여 최근 빠른 속도로 발전하는 금융시장에 맞는 진보된 인공지능형 자산배분 모형을 제시한 점에서 의의가 있다.

M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발 (Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms)

  • 양훈석;김선웅;최흥식
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.63-83
    • /
    • 2019
  • 투자자들은 기업의 내재가치 분석, 기술적 보조지표 분석 등 복잡한 분석보다 차트(chart)에 나타난 그래프(graph)의 모양으로 매매 시점을 찾는 직관적인 방법을 더 선호하는 편이다. 하지만 패턴(pattern) 분석 기법은 IT 구현의 난이도 때문에 사용자들의 요구에 비해 전산화가 덜 된 분야로 여겨진다. 최근에는 인공지능(artificial intelligence, AI) 분야에서 신경망을 비롯한 다양한 기계학습(machine learning) 기법을 사용하여 주가의 패턴을 연구하는 사례가 많아졌다. 특히 IT 기술의 발전으로 방대한 차트 데이터를 분석하여 주가 예측력이 높은 패턴을 발굴하는 것이 예전보다 쉬워졌다. 지금까지의 성과로 볼 때 가격의 단기 예측력은 높아졌지만, 장기 예측력은 한계가 있어서 장기 투자보다 단타 매매에서 활용되는 수준이다. 이외에 과거 기술력으로 인식하지 못했던 패턴을 기계적으로 정확하게 찾아내는 데 초점을 맞춘 연구도 있지만 찾아진 패턴이 매매에 적합한지 아닌지는 별개의 문제이기 때문에 실용적인 부분에서 취약할 수 있다. 본 연구는 주가 예측력이 있는 패턴을 찾으려는 기존 연구 방법과 달리 패턴들을 먼저 정의해 놓고 확률기반으로 선택해서 매매하는 방법을 제안한다. 5개의 전환점으로 정의한 Merrill(1980)의 M&W 파동 패턴은 32가지의 패턴으로 시장 국면 대부분을 설명할 수 있다. 전환점만으로 패턴을 분류하기 때문에 패턴 인식의 정확도를 높이기 위해 드는 비용을 줄일 수 있다. 32개 패턴으로 만들 수 있는 조합의 수는 전수 테스트가 불가능한 수준이다. 그래서 최적화 문제와 관련한 연구들에서 가장 많이 사용되고 있는 인공지능 알고리즘(algorithm) 중 하나인 유전자 알고리즘(genetic algorithm, GA)을 이용하였다. 그리고 미래의 주가가 과거를 반영한다 해도 같게 움직이지 않기 때문에 전진 분석(walk-forward analysis, WFA)방법을 적용하여 과최적화(overfitting)의 실수를 줄이도록 하였다. 20종목씩 6개의 포트폴리오(portfolio)를 구성하여 테스트해 본 결과에 따르면 패턴 매매에서 가격 변동성이 어느 정도 수반되어야 하며 패턴이 진행 중일 때보다 패턴이 완성된 후에 진입, 청산하는 것이 효과적임을 확인하였다.

전극 개수에 따른 근전도 기반 휴먼-컴퓨터 인터페이스의 정확도에 대한 연구 (Human-Computer Interface using sEMG according to the Number of Electrodes)

  • 이슬비;지영준
    • 한국HCI학회논문지
    • /
    • 제10권2호
    • /
    • pp.21-26
    • /
    • 2015
  • NUI(Natural User Interface)는 사용자의 자연스러운 동작이나 동작 시 발생하는 생체 신호를 해석하여 기계에 명령을 내리는 것을 말한다. 물리적인 변화가 있어야 사용이 가능한 가속도 센서나 영상 기반의 NUI와는 달리 특정 동작과 관련된 근육의 표면 근전도(surface Electromyogram, sEMG)를 측정하면 실제 움직임이 발생하지 않아도(isometric contraction) 동작 의도를 예측할 수 있다. 본 연구에서는 근전도 기반으로 손목 동작 의도를 분류할 때 전극 개수에 따른 정확도를 확인하고, 키보드 등에 적용 가능한 인터페이스 기술을 제안한다. 손목의 동작 중 신전(extension, up), 굴곡(flexion, down), 외전(abduction, right), 내전(adduction, left)의 네 가지 동작 의도를 분류하는 실험을 진행하였다. 50ms 간격으로 계산된 제곱평균제곱근(Root Mean Square, RMS)을 특징으로 사용하였고, 동작 의도 인식을 위해 역전파 알고리즘으로 학습한 다층 퍼셉트론 분류기를 사용하였다. 전극 쌍의 개수를 네 개(91.9%), 세 개(87.0%), 두 개(78.9%)로 줄여가며 정확도를 확인했다. 전극 쌍의 개수가 네 개에서 두 개로 줄었을 때 정확도는 약 13% 감소하였다. 두 쌍의 전극만 사용하는 경우의 분류 정확도를 높이기 위하여 직전의 RMS를 특징에 추가하였다. 150 ms 이전까지의 정보를 사용하였을 때, 분류 정확도가 78.9%에서 83.6%로 4.6% 증가하였다. 전극 쌍의 개수가 감소함에 따라 정확도는 감소하였지만, 이전 데이터를 함께 사용한 경우 부분적으로 증가 시킬 수 있음을 확인하였다.

Himawari-8 정지궤도 위성 영상을 활용한 딥러닝 기반 산불 탐지의 효율적 방안 제시 (Efficient Deep Learning Approaches for Active Fire Detection Using Himawari-8 Geostationary Satellite Images)

  • 이시현;강유진;성태준;임정호
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.979-995
    • /
    • 2023
  • 산불은 예측이 어려운 재해이기 때문에 실시간 모니터링을 통해 빠르게 대응하는 것이 중요하며, 정지 궤도 위성 영상은 광역을 짧은 시간 간격으로 모니터링할 수 있어 산불 탐지 분야에 활발히 이용되고 있다. 기존의 위성 영상 기반 산불 탐지 알고리즘은 밝기 온도의 통계량 분석을 통한 임계값 기반으로 이상치를 탐지하는 방향으로 진행되어 왔다. 그러나 강도가 약한 산불을 탐지하기 어렵거나, 적절한 임계값 설정의 어려움으로 일반화 성능이 저하되는 한계점이 있어 최근에는 기계학습을 이용한 산불 탐지 알고리즘들이 제시되고 있다. 현재까지는 random forest, VanillaConvolutional neural network (CNN), U-net 구조 등의 비교적 간단한 기법이 적용되고 있다. 따라서, 본 연구에서는 정지궤도 위성인 Advanced Himawari Imager를 이용하여 동아시아와 호주를 대상으로 State of the Art (SOTA)딥러닝 기법을 적용한 산불 탐지 알고리즘을 개발하고자 하였다. SOTA 모델은 EfficientNet과 lion optimizer를 적용하여 개발하고, Vanilla CNN 구조를 사용한 모델과 산불 탐지 결과를 비교하였다. EfficientNet은 동아시아와 호주에서 0.88 및 0.83의 F1-score를 기록함으로써 CNN (동아시아: 0.83, 호주: 0.78)에 비해 뛰어난 성능을 입증하였다. EfficientNet에 불균형 문제 해결을 위한 weighted loss, equal sampling, image augmentation 기법 적용 시, 동아시아와 호주에서 각각 0.92와 0.84의 F1-score를 기록함으로써 적용 전(동아시아: 0.88, 호주: 0.83)에 비하여 성능이 향상되었음을 확인하였다. 본 연구를 통하여 제시된 SOTA 딥러닝 기법의 산불 탐지에의 적용 가능성과 딥러닝 모델의 성능 향상을 위해 고려해야 할 방향은 향후 산불탐지 분야에 대한 딥러닝 적용에 도움이 될 것으로 기대된다.

차원축소를 활용한 해외제조업체 대상 사전점검 예측 모형에 관한 연구 (Preliminary Inspection Prediction Model to select the on-Site Inspected Foreign Food Facility using Multiple Correspondence Analysis)

  • 박혜진;최재석;조상구
    • 지능정보연구
    • /
    • 제29권1호
    • /
    • pp.121-142
    • /
    • 2023
  • 수입식품의 수입 건수와 수입 중량이 꾸준히 증가함에 따라 식품안전사고 방지를 위한 수입식품의 안전관리가 더욱 중요해지고 있다. 식품의약품안전처는 통관단계의 수입검사와 더불어 통관 전 단계인 해외제조업소에 대한 현지실사를 시행하고 있지만 시간과 비용이 많이 소요되고 한정된 자원 등의 제약으로 데이터 기반의 수입식품 안전관리 방안이 필요한 실정이다. 본 연구에서는 현지실사 전 부적합이 예상되는 업체를 사전에 선별하는 기계학습 예측 모형을 마련하여 현지실사의 효율성을 높이고자 하였다. 이를 위해 통합식품안전정보망에 수집된 총 303,272건의 해외제조가공업소 기본정보와 2019년도부터 2022년 4월까지의 현지실사 점검정보 데이터 1,689건을 수집하였다. 해외제조가공업소의 데이터 전처리 후 해외 제조업소_코드를 활용하여 현지실사 대상 데이터만 추출하였고, 총 1,689건의 데이터와 103개의 변수로 구성되었다. 103개의 변수를 테일유(Theil-U) 지표를 기준으로 '0'인 변수들을 제거하였고, 다중대응분석(Multiple Correspondence Analysis)을 적용해 축소 후 최종적으로 49개의 특성변수를 도출하였다. 서로 다른 8개의 모델을 생성하고, 모델 학습 과정에서는 5겹 교차검증으로 과적합을 방지하고, 하이퍼파라미터를 조정하여 비교 평가하였다. 현지실사 대상업체 선별의 연구목적은 부적합 업체를 부적합이라고 판정하는 확률인 검측률(recall)을 최대화하는 것이다. 머신러닝의 다양한 알고리즘을 적용한 결과 Recall_macro, AUROC, Average PR, F1-score, 균형정확도(Balanced Accuracy)가 가장 높은 랜덤포레스트(Random Forest)모델이 가장 우수한 모형으로 평가되었다. 마지막으로 모델에 의해서 평가된 개별 인스턴스의 부적합 업체 선정 근거를 제시하기 위해 SHAP(Shapley Additive exPlanations)을 적용하고 현지실사 업체 선정 시스템에의 적용 가능성을 제시하였다. 본 연구결과를 바탕으로 데이터에 기반한 과학적 위험관리 모델을 통해 수입식품 관리체계의 구축으로 인력·예산 등 한정된 자원의 효율적 운영방안 마련에 기여하길 기대한다.