• Title/Summary/Keyword: 기계적 학습

Search Result 1,718, Processing Time 0.033 seconds

An Efficient Multi-Attribute Negotiation System using Learning Agents for Reciprocity (상호 이익을 위한 학습 에이전트 기반의 효율적인 다중 속성 협상 시스템)

  • Park, Sang-Hyun;Yang, Sung-Bong
    • The KIPS Transactions:PartD
    • /
    • v.11D no.3
    • /
    • pp.731-740
    • /
    • 2004
  • In this paper we propose a fast negotiation agent system that guarantees the reciprocity of the attendants in a bilateral negotiation on the e-commerce. The proposednegotiation agent system exploits the incremental learning method based on an artificial neural network in generating a counter-offer and is trained by the previous offer that has been rejected by the other party. During a negotiation, the software agents on behalf of a buyer and a seller negotiate each other by considering the multi-attributes of a product. The experimental results show that the proposed negotiation system achieves better agreements than other negotiation agent systems that are operated under the realistic and practical environment. Furthermore, the proposed system carries out negotiations about twenty times faster than the previous negotiation systems on the average.

Malicious Insider Detection Using Boosting Ensemble Methods (앙상블 학습의 부스팅 방법을 이용한 악의적인 내부자 탐지 기법)

  • Park, Suyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.267-277
    • /
    • 2022
  • Due to the increasing proportion of cloud and remote working environments, various information security incidents are occurring. Insider threats have emerged as a major issue, with cases in which corporate insiders attempting to leak confidential data by accessing it remotely. In response, insider threat detection approaches based on machine learning have been developed. However, existing machine learning methods used to detect insider threats do not take biases and variances into account, which leads to limited performance. In this paper, boosting-type ensemble learning algorithms are applied to verify the performance of malicious insider detection, conduct a close analysis, and even consider the imbalance in datasets to determine the final result. Through experiments, we show that using ensemble learning achieves similar or higher accuracy to other existing malicious insider detection approaches while considering bias-variance tradeoff. The experimental results show that ensemble learning using bagging and boosting methods reached an accuracy of over 98%, which improves malicious insider detection performance by 5.62% compared to the average accuracy of single learning models used.

Study on Fault Detection of a Gas Pressure Regulator Based on Machine Learning Algorithms

  • Seo, Chan-Yang;Suh, Young-Joo;Kim, Dong-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.19-27
    • /
    • 2020
  • In this paper, we propose a machine learning method for diagnosing the failure of a gas pressure regulator. Originally, when implementing a machine learning model for detecting abnormal operation of a facility, it is common to install sensors to collect data. However, failure of a gas pressure regulator can lead to fatal safety problems, so that installing an additional sensor on a gas pressure regulator is not simple. In this paper, we propose various machine learning approach for diagnosing the abnormal operation of a gas pressure regulator with only the flow rate and gas pressure data collected from a gas pressure regulator itself. Since the fault data of a gas pressure regulator is not enough, the model is trained in all classes by applying the over-sampling method. The classification model was implemented using Gradient boosting, 1D Convolutional Neural Networks, and LSTM algorithm, and gradient boosting model showed the best performance among classification models with 99.975% accuracy.

A Study on Machine Learning Algorithm Suitable for Automatic Crack Detection in Wall-Climbing Robot (벽면 이동로봇의 자동 균열검출에 적합한 기계학습 알고리즘에 관한 연구)

  • Park, Jae-Min;Kim, Hyun-Seop;Shin, Dong-Ho;Park, Myeong-Suk;Kim, Sang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.449-456
    • /
    • 2019
  • This paper is a study on the construction of a wall-climbing mobile robot using vacuum suction and wheel-type movement, and a comparison of the performance of an automatic wall crack detection algorithm based on machine learning that is suitable for such an embedded environment. In the embedded system environment, we compared performance by applying recently developed learning methods such as YOLO for object learning, and compared performance with existing edge detection algorithms. Finally, in this study, we selected the optimal machine learning method suitable for the embedded environment and good for extracting the crack features, and compared performance with the existing methods and presented its superiority. In addition, intelligent problem - solving function that transmits the image and location information of the detected crack to the manager device is constructed.

Comparative Analysis of Classification Methods for Alzheimer's Dementia Patients (알츠하이머 치매환자 분류 방법 비교 분석)

  • Lee, Jae-Kyung;Seo, Jin-Beom;Lee, Jae-Seong;Cho, Young-Bok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.323-324
    • /
    • 2022
  • 전 세계적으로 고령화 사회가 지속됨에 따라 평균수명이 증가하여 고령화 문제가 심각해지고 있는 추세이다. 고령에 속하는 65세 이상 노인들이 자주 발병하는 알츠하이머 치매는 명확한 치료법이 존재하지 않아 발병 전 조기 발견 및 예방이 중요하다. 본 논문에서는 컨볼루션 신경망을 기반으로 한 알츠하이머 치매분류방법을 제안한 논문과, 그래프 합성곱 신경망, 다중 커널 학습 분류기, 기계학습, SVM 분류기 등의 방법으로 알츠하이머 치매 분류에 대한 논문을 소개하고, 각각의 제안 방법 및 특징에 대해 비교분석한다.

  • PDF

Modelling Grammatical Pattern Acquisition using Video Scripts (비디오 스크립트를 이용한 문법적 패턴 습득 모델링)

  • Seok, Ho-Sik;Zhang, Byoung-Tak
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.127-129
    • /
    • 2010
  • 본 논문에서는 다양한 코퍼스를 통해 언어를 학습하는 과정을 모델링하여 무감독학습(Unsupervised learning)으로 문법적 패턴을 습득하는 방법론을 소개한다. 제안 방법에서는 적은 수의 특성 조합으로 잠재적 패턴의 부분만을 표현한 후 표현된 규칙을 조합하여 유의미한 문법적 패턴을 탐색한다. 본 논문에서 제안한 방법은 베이지만 추론(Bayesian Inference)과 MCMC (Markov Chain Mote Carlo) 샘플링에 기반하여 특성 조합을 유의미한 문법적 패턴으로 정제하는 방법으로, 랜덤하이퍼그래프(Random Hypergraph) 모델을 이용하여 많은 수의 하이퍼에지를 생성한 후 생성된 하이퍼에지의 가중치를 조정하여 유의미한 문법적 패턴을 탈색하는 방법론이다. 우리는 본 논문에서 유아용 비디오의 스크립트를 이용하여 다양한 유아용 비디오 스크립트에서 문법적 패턴을 습득하는 방법론을 소개한다.

  • PDF

A Learning Model for Recommendation of Humor Documents (유머문서 추천을 위한 기계학습 기법)

  • 이종우;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.253-255
    • /
    • 2001
  • 인터넷을 통한 사용자의 선호도를 분석하고 협력적 여과 및 내용기반 여과 기술을 결합 이용하여 유머문서를 추천하는 MrHumor 시스템을 구축하였다. 유머문서 추천 기술은 다양한 아이템에 대한 여과 및 추천 기술로 확장되어 인터넷을 통한 과다 정보 시대에 필요한 소프트봇 혹은 지능형 에이전트 기술에 적용될 수 있다. MrHumor 추천시스템은 적응형 학습 시스템으로서 새로운 사용자의 선호도에 대한 학습량과 추천시기에 따라 이용할 추천방식이 다른 성능을 보이는데 여러 가지 상황에서도 적절한 동작을 보이기 위하여 MrHumor에서는 은닉변수 모델을 이용하여 사용자의 인구통계적 정보와 문서의 내용적 특징간의 관계를 학습하여 초기 추천을 행하고 SVM을 이용하여 개인의 선호도를 학습한 내용 기반의 여과와 적응형 k-NN모델을 이용한 협력적 여과를 결합하여 추천을 수행한다. 제안된 방식에 의한 추천 성능은 3방식이 각각 이용된 경우에 비해 안정적이고 높은 예측 정확도를 보인다.

  • PDF

Reinforcement learning-based behavior control of a grid-type system for sorting parcels (소포물 분류를 위한 그리드 타입 시스템의 강화 학습 기반 행동 제어)

  • Choi, Ho-Bin;Kim, Ju-Bong;Hwang, Gyu-Young;Han, Youn-Hee
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.585-586
    • /
    • 2020
  • 공정 데이터를 실시간으로 수집할 수 있는 스마트 팩토리의 장점을 활용하여, 일반적인 기계 학습 대신 강화 학습을 사용한다면 미리 요구되는 훈련 데이터 없이 행동 제어를 할 수 있다. 하지만, 현실 세계에서는 물리적 마모, 시간적 문제 등으로 인해 수천만 번 이상의 반복 학습이 불가능하다. 따라서, 본 논문에서는 시뮬레이터를 활용해 스마트 팩토리 분야에서 복잡한 환경 중 하나인 이송 설비에 초점을 둔 그리드 분류 시스템을 개발하고 협력적 다중 에이전트 기반의 강화 학습을 설계하여 효율적인 행동 제어가 가능함을 입증한다.

A Study on Low Power Design of SVM Algorithm for IoT Environment (IoT 환경을 위한 SVM 알고리즘 저전력화 방안 연구)

  • Song, Jun-Seok;Kim, Sang-Young;Song, Byung-Hoo;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.73-74
    • /
    • 2017
  • SVM(Support Vector Machine) 알고리즘은 대표적인 기계 학습 분류 알고리즘으로 감정 분석, 제스처 인식 등 다양한 분야의 문제를 해결하기 위해 사용되고 있다. SVM 알고리즘은 분리경계면(Hyper-Plane) 또는 분리경계면 집합 중 지지벡터(Support Vector)라 불리는 특정한 점들로 이루어진 두 그룹 간의 거리 차이(Margin)를 최대로 하는 분리경계면을 이용하여 데이터를 분류하는 알고리즘이다. 높은 정확도를 제공하지만 처리 속도가 느리며 학습을 위해 대량의 데이터 및 메모리가 필요하기 때문에 자원이 제한적인 IoT 환경에서 사용이 어렵다. 본 논문에서는 자원이 제한된 IoT 노드를 기반으로 효율적으로 데이터를 학습하기 위해 K-means 알고리즘을 이용하여 SVM 알고리즘의 저전력화 방안을 연구한다.

  • PDF

Development of a High-Performance Concrete Compressive-Strength Prediction Model Using an Ensemble Machine-Learning Method Based on Bagging and Stacking (배깅 및 스태킹 기반 앙상블 기계학습법을 이용한 고성능 콘크리트 압축강도 예측모델 개발)

  • Yun-Ji Kwak;Chaeyeon Go;Shinyoung Kwag;Seunghyun Eem
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.9-18
    • /
    • 2023
  • Predicting the compressive strength of high-performance concrete (HPC) is challenging because of the use of additional cementitious materials; thus, the development of improved predictive models is essential. The purpose of this study was to develop an HPC compressive-strength prediction model using an ensemble machine-learning method of combined bagging and stacking techniques. The result is a new ensemble technique that integrates the existing ensemble methods of bagging and stacking to solve the problems of a single machine-learning model and improve the prediction performance of the model. The nonlinear regression, support vector machine, artificial neural network, and Gaussian process regression approaches were used as single machine-learning methods and bagging and stacking techniques as ensemble machine-learning methods. As a result, the model of the proposed method showed improved accuracy results compared with single machine-learning models, an individual bagging technique model, and a stacking technique model. This was confirmed through a comparison of four representative performance indicators, verifying the effectiveness of the method.