• 제목/요약/키워드: 기계적 학습

검색결과 1,718건 처리시간 0.032초

적대적 머신러닝 공격과 방어기법 (A Study Adversarial machine learning attacks and defenses)

  • 이제민;박재경
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.621-623
    • /
    • 2023
  • 본 논문에서는 기계 학습 모델의 취약점과 대응책에 초점을 맞추어 적대적인 기계 학습 공격 및 방어 분야를 탐구한다. 신중하게 만들어진 입력 데이터를 도입하여 기계 학습 모델을 속이거나 조작하는 것을 목표로 하는 적대적 공격에 대한 심층 분석을 제공한다. 이 논문은 회피 및 독성 공격을 포함한 다양한 유형의 적대적 공격을 조사하고 기계 학습 시스템의 안정성과 보안에 대한 잠재적 영향을 조사한다. 또한 적대적 공격에 대한 기계 학습 모델의 견고성을 향상시키기 위해 다양한 방어 메커니즘과 전략을 제안하고 평가한다. 본 논문은 광범위한 실험과 분석을 통해 적대적 기계 학습에 대한 이해에 기여하고 효과적인 방어 기술에 대한 통찰력을 제공하는 것을 목표로 한다.

  • PDF

효율적인 기계학습을 위한 데이터 전처리 (Data preprocessing for efficient machine learning)

  • 김동현;유승언;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.49-50
    • /
    • 2019
  • 데이터를 기반으로 한 기계학습은 데이터의 양, 학습 모델, 그리고 데이터의 특징 등 다양한 환경에 민감한 특징을 지니고 있어, 보다 효율적인 기계학습을 위해 데이터의 전처리 과정을 필요로 한다. 데이터의 전처리 과정이란 특징 선택(Feature selection), 노이즈 데이터의 제거, 차원 감소(Demension reduction), 클러스터링(Clustering) 등 보다 효율적인 기계학습을 위한 방법이다. 따라서 본 논문에서는 다양한 환경에서 보다 효율적인 기계학습을 위한 데이터 전처리 기술의 종류 및 간단한 특징에 대해 서술한다.

  • PDF

양자 기계학습 기술의 현황 및 전망 (The Present and Perspective of Quantum Machine Learning)

  • 정원주;이성환
    • 정보과학회 논문지
    • /
    • 제43권7호
    • /
    • pp.751-762
    • /
    • 2016
  • 본고에서는 양자역학 기반의 기계학습인 양자 기계학습의 현황과 전망을 조망하고자 한다. 양자역학 기반의 양자컴퓨팅이 보여준 혁신적인 계산속도 개선에 힘입어 기계학습 분야에 양자컴퓨팅 알고리즘을 적용하는 연구는 빅데이터 시대의 도래에 따라 최근 집중적인 관심을 받고 있다. 고전적인 기계학습 알고리즘들에 양자컴퓨팅을 접목하여 획기적인 속도개선을 가능하게 하는 알고리즘 연구들과 최초의 상용 양자컴퓨터로 화제가 되고 있는 양자 담금질 알고리즘 등을 중심으로 양자 기계학습의 최신동향과 가능성을 살펴보고자 한다.

Azure 클라우드 플랫폼의 가상서버 호스팅을 이용한 데이터 수집환경 및 분석에 관한 연구 (A study on data collection environment and analysis using virtual server hosting of Azure cloud platform)

  • 이재규;조인표;이상엽
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.329-330
    • /
    • 2020
  • 본 논문에서는 Azure 클라우드 플랫폼의 가상서버 호스팅을 이용해 데이터 수집 환경을 구축하고, Azure에서 제공하는 자동화된 기계학습(Automated Machine Learning, AutoML)을 기반으로 데이터 분석 방법에 관한 연구를 수행했다. 가상 서버 호스팅 환경에 LAMP(Linux, Apache, MySQL, PHP)를 설치하여 데이터 수집환경을 구축했으며, 수집된 데이터를 Azure AutoML에 적용하여 자동화된 기계학습을 수행했다. Azure AutoML은 소모적이고 반복적인 기계학습 모델 개발을 자동화하는 프로세스로써 기계학습 솔루션 구현하는데 시간과 자원(Resource)를 절약할 수 있다. 특히, AutoML은 수집된 데이터를 분류와 회귀 및 예측하는데 있어서 학습점수(Training Score)를 기반으로 보유한 데이터에 가장 적합한 기계학습 모델의 순위를 제공한다. 이는 데이터 분석에 필요한 기계학습 모델을 개발하는데 있어서 개발 초기 단계부터 코드를 설계하지 않아도 되며, 전체 기계학습 시스템을 개발 및 구현하기 전에 모델의 구성과 시스템을 설계해볼 수 있기 때문에 매우 효율적으로 활용될 수 있다. 본 논문에서는 NPU(Neural Processing Unit) 학습에 필요한 데이터 수집 환경에 관한 연구를 수행했으며, Azure AutoML을 기반으로 데이터 분류와 회귀 등 가장 효율적인 알고리즘 선정에 관한 연구를 수행했다.

  • PDF

기계학습 및 딥러닝 기술동향

  • 문성은;장수범;이정혁;이종석
    • 정보와 통신
    • /
    • 제33권10호
    • /
    • pp.49-56
    • /
    • 2016
  • 본 논문에서는 패턴 인식 및 회귀 문제를 풀기 위해 쓰이는 기계학습에 대한 전반적인 이론과 설계방법에 대해 알아본다. 대표적인 기계학습 방법인 신경회로망과 기저벡터머신 등에 대해 소개하고 이러한 기계학습 모델을 선택하고 구축하는 데에 있어 고려해야 하는 문제점들에 대해 이야기 한다. 그리고 특징 추출 과정이 기계학습 모델의 성능에 어떻게 영향을 미치는지, 일반적으로 특징 추출을 위해 어떤 방법들이 사용되는 지에 대해 알아본다. 또한, 최근 새로운 패러다임으로 대두되고 있는 딥러닝에 대해 소개한다. 자가인코더, 제한볼츠만기계, 컨볼루션신경회로망, 회귀신경회로망과 같이 딥러닝 기술이 적용된 대표적인 신경망 구조에 대해 설명하고 기존의 기계학습 모델과 비교하여 딥러닝이 가지고 있는 특장점을 알아본다.

프라이버시를 보호하는 분산 기계 학습 연구 동향 (Systematic Research on Privacy-Preserving Distributed Machine Learning)

  • 이민섭;신영아;천지영
    • 정보처리학회 논문지
    • /
    • 제13권2호
    • /
    • pp.76-90
    • /
    • 2024
  • 인공지능 기술은 스마트 시티, 자율 주행, 의료 분야 등 다양한 분야에서 활용 가능성을 높이 평가받고 있으나, 정보주체의 개인정보 및 민감정보의 노출 문제로 모델 활용이 제한되고 있다. 이에 따라 데이터를 중앙 서버에 모아서 학습하지 않고, 보유 데이터셋을 바탕으로 일차적으로 학습을 진행한 후 글로벌 모델을 최종적으로 학습하는 분산 기계 학습의 개념이 등장하였다. 그러나, 분산 기계 학습은 여전히 협력하여 학습을 진행하는 과정에서 데이터 프라이버시 위협이 발생한다. 본 연구는 분산 기계 학습 연구 분야에서 프라이버시를 보호하기 위한 연구를 서버의 존재 유무, 학습 데이터셋의 분포 환경, 참여자의 성능 차이 등 현재까지 제안된 분류 기준들을 바탕으로 유기적으로 분석하여 최신 연구 동향을 파악한다. 특히, 대표적인 분산 기계 학습 기법인 수평적 연합학습, 수직적 연합학습, 스웜 학습에 집중하여 활용된 프라이버시 보호 기법을 살펴본 후 향후 진행되어야 할 연구 방향을 모색한다.

Big Data 분석을 위한 Machine Learning

  • 이재구;이태훈;윤성로
    • 정보와 통신
    • /
    • 제31권11호
    • /
    • pp.14-26
    • /
    • 2014
  • 본고는 빅데이터 시대에 새로운 가치를 창출할 수 있는 정보 분석을 위한 기계학습을 설명하고자 한다. 기계학습의 일반적 정의와 특성, 그리고 빅데이터 특성에 의한 기계학습의 변화를 확인하고 특별히 다양한 변화 중에서 분산 및 병렬화를 통한 스케일러블 기계학습을 중점으로 주어진 빅데이터를 효율적으로 분석할 수 있는 다양한 플랫폼들과 프레임워크들을 설명한다. 더불어 실제 다양한 응용 활용을 제공하고 있는 Google API 같은 빅데이터 분석 기계학습 프로젝트들을 통해서 기계학습을 통한 빅데이터 분석에 대한 폭넓은 이해를 전달하고자 한다.

비디오 화질 자동 측정 기술 개발을 위한 데이터 셋 구축 방법 (Data Set Design Method for developing Automatic Video Quality Measurement Technology)

  • 정세윤;이대열;정연수;김태화;조승현;김휘용
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.223-224
    • /
    • 2018
  • 기계학습 기반 비디오 화질 자동 측정 기술은 주관적 화질 평가를 대체하기 위한 기술로, 비디오를 입력 신호로 화질 평가 결과를 출력 신호로 하는 기계학습 모델을 통해서 개발하는 기술이다. 학습에 필요한 비디오 데이터 셋은 입력 신호인 비디오 시퀀스와 입력의 출력신호로 학습할 주관적 화질 평가 결과로 구성된다. 이때 데이터 셋의 일부는 기계학습 기반 비디오 화질 자동 측정 기술 개발 과정에서 학습에 사용하고, 남은 일부는 개발 기술의 성능 평가에 사용한다. 일반적으로 기계학습 기반 기술의 성능은 학습 데이터의 양과 질에 비례한다. 그러나, 기계학습 기반 비디오 화질 자동 측정 기술 개발에 필요한 데이터 셋은 주관적 화질 평가 결과를 포함해야 하므로, 데이터 양을 늘리는 것은 쉬운 문제가 아니다. 이에 본 논문에서는 압축 비디오에 대한 화질 자동 측정 기술 개발을 위해 필요한 데이터 셋을 양과 질적 측면에서 효율적으로 구축하는 방법을 제안한다. 양적 측면에서 효율성을 높이기 위해 부호화 복잡도와 평가 난이도 기반으로 시퀀스를 선정 방법을, 질적 측면에서 효율성을 높이기 위해 쌍 비교(Pairwise Comparison)기반의 주관적 화질 평가 방법을 제안한다.

  • PDF

실시간 데이터 처리를 위한 아파치 스파크 기반 기계 학습 라이브러리 성능 비교 (A Performance Comparison of Machine Learning Library based on Apache Spark for Real-time Data Processing)

  • 송준석;김상영;송병후;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제55차 동계학술대회논문집 25권1호
    • /
    • pp.15-16
    • /
    • 2017
  • IoT 시대가 도래함에 따라 실시간으로 대규모 데이터가 발생하고 있으며 이를 효율적으로 처리하고 활용하기 위한 분산 처리 및 기계 학습에 대한 관심이 높아지고 있다. 아파치 스파크는 RDD 기반의 인 메모리 처리 방식을 지원하는 분산 처리 플랫폼으로 다양한 기계 학습 라이브러리와의 연동을 지원하여 최근 차세대 빅 데이터 분석 엔진으로 주목받고 있다. 본 논문에서는 아파치 스파크 기반 기계 학습 라이브러리 성능 비교를 통해 아파치 스파크와 연동 가능한 기계 학습라이브러리인 MLlib와 아파치 머하웃, SparkR의 데이터 처리 성능을 비교한다. 이를 위해, 대표적인 기계 학습 알고리즘인 나이브 베이즈 알고리즘을 사용했으며 학습 시간 및 예측 시간을 비교하여 아파치 스파크 기반에서 실시간 데이터 처리에 적합한 기계 학습 라이브러리를 확인한다.

  • PDF

사용자의 행동과 점진적 기계학습을 이용한 쓰레기 편지 여과 시스템의 설계 (Designing a Spam Mail Filtering System Using User Reaction and Incremental Machine Learning)

  • 김강민;박은진;김재훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 춘계학술발표대회
    • /
    • pp.775-778
    • /
    • 2005
  • 본 논문은 쓰레기 편지를 여과하기 위해 대상 편지에 따른 사용자들의 행동(reaction)을 묵시적(implicitly)으로 수집한 후 이를 점진적(incrementally) 기계학습기의 자질(feature)로 사용하여 편지 여과 작업의 증거가 되는 단어들을 지속적으로 학습하면서 최적의 편지 여과 결과를 제공하는 기법과 시스템 구조를 제안한다. 사용자 개인의 컴퓨터에 행동 정보와 학습 데이터를 저장하도록 설계하여 묵시적 정보 수집에서 자주 제기되는 개인 프라이버시 문제를 해결하였으며, 점진적 기계학습 기법을 사용하여 개인 정보를 포함하는 대량의 편지 학습 데이터를 모으기 힘들다는 문제를 해결하였다. 또 향후 제안하는 시스템을 이용하여 여러 종류의 기계학습 기법 중 쓰레기 편지 여과 작업을 가장 효과적으로 수행할 수 있는 기법을 선택하는 작업을 수행할 계획이다.

  • PDF