Browse > Article
http://dx.doi.org/10.3795/KSME-A.2010.34.6.675

Development of Bioreactor for Regenerative Medicine and Effect of Mechanical Stimuli on Mesenchymal Stem Cells in Polyurethane Scaffolds  

Joo, Min-Jin (School of Mechanical Engineering, Yonsei Univ.)
Chun, Heoung-Jae (School of Mechanical Engineering, Yonsei Univ.)
Jung, Hyung-Jin (School of Mechanical Engineering, Yonsei Univ.)
Lee, Chang-Gun (College of Medical Science, Yonsei Univ.)
Heo, Dong-Nyoung (College of Dental Science, Kyunghee Univ.)
Kwon, Il-Keun (College of Dental Science, Kyunghee Univ.)
Moon, Seong-Hwan (College of Medical Science, Yonsei Univ.)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.34, no.6, 2010 , pp. 675-681 More about this Journal
Abstract
It is well known that mesenchymal stem cell(MSCs) can be differentiated into fibroblasts, chondrocytes, and osteoblasts and that they develop into fibrous tissue, cartilage, or bone, as a result of mechanical stimulation. In this study, we developed a bioreactor system, which is composed of a reactor vessel that provides the required cell culture environment, an environment controlling chamber to control the media, a gas mixer, and a reactor motion control subsystem to apply mechanical stimuli to the cells. For the MSC culture, We used a poly-urethane (PU) scaffold, with a collagen coating to ensure improved cohesion ratio. Then, we transferred the cultivated MSCs in the PU scaffold, cultured the cells in the bioreactor system, and confirmed the proliferation, differentiation, and ossification processes, resulting from mechanical stimuli.
Keywords
Bioreactor; Mechanical Stimulation; Mesenchymal Stem Cell; Polyurethane Scaffold;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Isobe, M. Yamazaki, Y. Oida, S. I. Ishihara, K. Nakabayashi, N. and Amagasa, T., “Bone Morphogenetic Protein Encapsulated with a Biodegradable and Biocompatible Polymer,” Journal of Biomedical Materials Research, Vol. 32, No. 3, pp. 433-438.   DOI   ScienceOn
2 Bruder, S. P. Fink, D. J. and Caplan, A. I., 1994, “Mesenchymal Stem Cells in Bonedevelopment, Bone Repair, and Skeletal Regeneration Therapy,” J Cell Biochem, Vol. 56, pp. 283-294.
3 Nugent-Derfus, G. E. Takara, J. K. O'Neill, S. B. Cahill, S. Görtz, T. Pong, Inoue H. Aneloski, N. M. Wang, W. W. Vega, K. I. Klein, T. J. Hsieh-Bonassera, N. D. Bae, W. C. Burke, J. D. Bugbee, W. D. and Sah R. L., 2007, “Continous Passive Motion Allpied to Whole Joints Stimulates Chondrocyte Biosynthesis of PRG4,” Osteoarthritis and Cartilage. Vol.15, pp. 566-574.   DOI   ScienceOn
4 Freshney, R. I., 1992, Animal Cell Culture-a Practical Approach, 2nd edi, IRL press, New york, pp.68-72
5 Vunjak-Novakovic, G. Meinel, L. Altman, G. and Kaplan, D., 2005, “Bioreactor Cultivation of Osteochondral Grafts,” Orthodontics and Craniofacial Research, Vol. 8, No. 3, pp. 209-218.   DOI   ScienceOn
6 Kadilaya, S. Lo, H. and Leong, K. W., 1994, “Biodegradable Polymers and Synthetic Bone Graft in Bone Formation and Repair,” American Academy orthopaedic Surgeons Symposium, pp. 317-324.
7 Gultekin, G. Atalay-Oral, C. Erkal, S. Sahin, F. Karastova, D. Tantekin-Ersolmaz, S. B. and Guner, F. S., 2008, “Fatty Acid-Based Polyurethane Films for Wound Dressing Applications,” J Mater Sci Mater Med, Vol. 20, No. 1, pp. 421-431.   DOI
8 Vunjaknovakovic, G. Freed, L. E. Biron, R. J. and Langer, R., 1996, “Effects of Mixing on the Composition and Morphology of Tissue-Engineered Cartilage,” AIChE J, Vol. 42, pp. 850-860.   DOI
9 Unsworth, B. R. and Lelkes, P. I., 1998, “Growing Tissues in Microgravity.Nat,” Med, Vol. 4, pp. 901-907.
10 Jasmund, I. and Bader, A., 2002, “Bioreactor Developments for Tissue Engineering Applications by the Example of the Bioartificial Liver,” Adv Biochem Eng, Vol. 74, pp. 99-109.
11 James, J. Yoo. and Lee, Il. Woo., 2002, Tissue Engineering and Regenerative Medicine, Koonja Publishing.
12 Altman, G.H., Horan, R.L., Martin, I., Farhadi, J., Stark, P.R., Volloch, V., Richmond, J.C., Vunjak-Novakovic, G. and Kaplan, D.L., 2002, "Cell Differentiation by Mechanical Stress" FASEB J, Vol. 16, No. 2, pp. 270-272.
13 Robert, P. Lanza, Robert Langer. and Joseph Vacanti., 2000, Principles of Tissue Engineering, Academic press.
14 Pittenger, M. F. Mackay, A. M. Beck, S.C. Jaiswal, R. K. Douglas, R. and Mosca, J. D., 1999, “Mutilineage Potential of Adult Human Mesenchymal Stem Cell,” Science, Vol. 284, pp. 143-147.   DOI   ScienceOn
15 Wendt, D. Marsano, A. Jakob, M. Heberer, M. and Martin, I., 2003, “Oscillating Perfusion of Cell Suspensions Through Three-Dimensional Scaffolds Enhances Cell Seeding Efficiency and Uniformity,” Biotechnol, Vol. 84, pp. 205-214.
16 Langelier, E. Rancourt, D. Bouchard, S. Lord, C. Stevens, P. P. Germain, L. and Auger, F. A., 1999, “Cyclic Traction Machine for Long-Term Culture of Fibroblast-Populated Collagen Gels,” Annals of Biomedical Engineering, Vol. 27, No. 1, pp. 67-72   DOI   ScienceOn
17 Gregory, H. A. Helen, H. Lu, R. L. Horan, Tara Calabro. Daniel Ryder. David, L. Kaplan. Peter Stark. Ivan Martin. John, C. R. and Grodana Vunfak- Novakovic., 2002, "Advanced Bioreactor with Controlled Application of Multi-Dimensional Strain for Tissue Engineering,” Transaction of the ASME, Vol. 124, pp. 742-749
18 Milan, J.L., Planell, J.A. and Lacroix, D., 2009, "Computational Modelling of the Mechanical Environment of Osteogenesis Within a Polylactic Acid-Calcium Phosphate Glass Scaffold," Biomaterials, Vol. 30, No. 25, pp.4219-4226.   DOI   ScienceOn
19 Ignatius, A., Blessing, H., Liedert, A., Schmidt, C., Neidlinger-Wilke, C., Kaspar, D., Friemert, B. and Claes, L., 2005, "Tissue Engineering of Bone: Effects of Mechanical Strain on Osteoblastic Cells in Type I Collagen Matrices," Biomaterials, Vol. 26, No. 3, pp. 311-318.   DOI   ScienceOn