• Title/Summary/Keyword: 기계적 교반

Search Result 142, Processing Time 0.037 seconds

Evaluation of Mechanical Properties with Tool Rotational Speed in Dissimilar Cast Aluminum and High-Strength Steel of Lap Jointed Friction Stir Welding (이종 주조알루미늄-고장력강의 겹치기 마찰교반접합에서 툴회전속도에 따른 기계적 특성평가)

  • Park, Jeong-Hun;Park, Seong-Hwan;Park, Soo-Hyeong;Joo, Young-Hwan;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.90-96
    • /
    • 2019
  • Recently, friction stir welding of dissimilar materials are one of the biggest issues in terms of light-weight and eco-friendly technology of the automotive, aircraft and ship industry. In this study, friction stir welding of dissimilar materials is introduced with different tool rotational speed. Materials used in experimentation consist of A357 gravity cast aluminum alloy and FB590 high-strength steel plates. Dissimilar materials of plate type are fabricated with width of 150mm, length of 300mm and thickness of 3mm and welding is carried out by the lap joint method. The correlation between probe length and mechanical properties were investigated according to rotational speed and welding speed at tool tilt angle 0 degree. Consequently, feasibility of FSWed dissimilar materials were successfully presented in case of cast aluminum and high-strength steel at lap joint method.

Structural Stability Evaluation on the shape of impeller for Industrial agitator (산업용 교반기 임펠러의 형상에 따른 구조 안정성 평가)

  • Kim, Key-Sun;Lim, Tae-Yang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.611-616
    • /
    • 2011
  • Two kinds of structural analysis on the shape of the impeller models, and the natural frequency, harmonic vibration analysis is performed on the shape of the impeller and the resonant frequency of the local analysis of vulnerable areas by ensuring the structural stability of the shape of the impeller evaluation.

The Welding Surface and Mechanical Characteristics in Friction Stir Welding for 5456-H116 Alloy (마찰교반용접에 의한 5456-H116 합금의 용접 형상과 기계적 특성)

  • Kim, Seong-Jong;Han, Min-Su;Jang, Seok-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.3
    • /
    • pp.273-278
    • /
    • 2012
  • The use of Al alloys instead of fiber-reinforced plastic(FRP) in ship construction has increased because of the advantages of Al-alloy ships, including high speed, increased load capacity, and ease of recycling. This paper describes the effects of probe diameter on the optimum friction stir welding conditions of 5456-H116 alloy for leisure ship, measured by a tensile test. In friction stir welding using a probe diameter of 5 mm under various travel and rotation speed conditions, the best performance was achieved with a travel speed of 61 mm/min. Using a probe diameter of 6 mm, rotation speeds of 170-210 rpm, and a travel speed of 15 mm/min produced a rough surface and voids because of insufficient heat input produced by the low rotation speed. At 500-800 rpm, chips were observed, although there were no voids, and the weld surface was excellent. However, at 1100-2500 rpm, many chips were produced due to excessive heat input. Heat effects were very evident on the bottom. For a travel speed of 15 mm/min, heat input caused by friction increased as the rotation speed increased. The mechanical characteristics were degraded by accelerated softening due to increasing heat input.