• Title/Summary/Keyword: 기계적합금화법

Search Result 82, Processing Time 0.022 seconds

Synthesis of ${\beta}-FeSi_2$ Powder by Mechanical Alloying Process (기계적 합금화법에 의한 ${\beta}-FeSi_2$ 분말 함성)

  • 이충효;조재문;김환태;권영순
    • Journal of Powder Materials
    • /
    • v.8 no.2
    • /
    • pp.104-109
    • /
    • 2001
  • The semiconducting ${\beta}-FeSi_2$ compound has been recognized as a thermoelectric material with excel-lent oxidation resistance and stable characteristics at elevated temperature. In the present work, we applied mechanical alloying(MA) technique to produce ${\beta}-FeSi_2$ compound using a mixture of elemental iron and silicon powders. The mechanical alloying was carried out using a Fritsch P-5 planetary mill under Ar gas atmosphere. The MA powders were characterized by the X-ray diffraction with Cu-K $\alpha$ radiation, thermal analysis and scanning electron microscopy. The single ${\beta}-FeSi_2$ phase has been obtained by mechanical alloying of $Fe_{33}Si_{67}$ mixture powders for 120 hrs or for 70 hrs coupled with the subsequent heat treatment up to $700^{\circ}C$. The grain size of ${\beta}-FeSi_2$ powders analyzed by Hall plot method was 44nm.

  • PDF

Thermal Analysis of $Bi_2Te_3$ Based Thernoelectric Compound Powder Produced by Mechanical Alloying (기계적 합금화법으로 제조된 $Bi_2Te_3$계 열전화합물 분말의 열분석)

  • Kim, Bong-Seo;Yang, Jun-Hyeok;Oh, Min-Wook;Park, Su-Dong;Lee, Hee-Woong;Park, Kyu-Seop;Bae, Dong-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.151-152
    • /
    • 2006
  • Bi-Te thermoelectric powder was fabricated by mechanical alloying method for 1 to 10 hours under vacuum in planetary mill. We investigated the properties of mechanically alloyed Bi-Te powder by thermal analysis, X-ray diffractometer and FESEM with EDS Bi-Te raw material was formed to $Bi_2Te_3$ phase at condition over 3.5 hours of mechanical alloying time.

  • PDF

Synthesis of Al/AlN Composites by Mechanical Alloying and the Effect of PCA on Their Properties (기계적 합금화법에 의한 Al/AlN 복합체 제조 및 PCA 영향)

  • Kim, Seok-Hyeoun;Kim, Yong-Jin;Ahn, Jung-Ho
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.238-243
    • /
    • 2011
  • Al/AlN composites were synthesized by mechanical alloying using process control agents(PCAs). Three different PCAs which contain N element, were examined to see the effectiveness of ball-milling and the nitridation during sintering. Among examined PCAs, $C_8H_6N_4O_5$ was the most effective to facilitate ball-milling and to form nitrides during a subsequent sintering. By a proper control of ball-milling and sintering, we could obtained surface-hardened Al-based composites.

Microstructure and Physical Properties of Cu-l0wt%W Sintered Material Fabricated by Mechanical Alloying Method (기계적 합금화법에 의해 제조된 Cu-l0wt%W 소결재의 미세조직 및 물성)

  • 김보수
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.167-173
    • /
    • 1994
  • Cu-10wt%W composite powders have been manufactured by a high energy ball milling technique. The composite powders were pressed at 250 MPa and sintered in a dry hydrogen at 103$0^{\circ}C$ for 4 hours. After sintering, Cu-10wt%W composite materials were forged. And the arc-resistance of forged materials which have the same relative density of 94% has been tested. Composite particles, i.e. tungsten particles distributed homogeneously in the copper matrix, was formed after 480 min mechanical alloying. Densities of these sintered materials were ranged from 74 to 84%. Densification degree was due to the formation of composite powders. As the mechanical alloying time increased, the hardness was increased and tungsten particle size was decreased. Arc loss of the forged specimens was decreased as increasing the mechanical alloying time.

  • PDF

Synthesis of Mg2Ni by mechanical alloying and its electrochemical characteristics for Ni-MH secondary battery (Ni-MH 2차 전지용 Mg2Ni의 기계적 합금화법에 의한 제조 및 전기화학적 특성)

  • Moon, Hong-Gi;Choi, Seung-Jun;Kim, Dae-Hwan;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.4
    • /
    • pp.225-232
    • /
    • 1999
  • The $Mg_2Ni$ hydrogen storage alloys which have much higher theoretical discharge capacity than $AB_5$ and $AB_2$ type alloys were synthesized by mechanical alloying with some additives and subjected to the electrochemical measurements. Two different processes were employed to the synthesis of $Mg_2Ni$ alloys with using the high energy ball mill SPEX 8000. One was only ball milling, 12 hrs, the Mg and Ni powders for 12 hrs with additives such as $AB_5$, Ni, Co and Cu powders. In the other process the Mg and Ni powders were ball milled for 1 hr first and then heat treated at $300{\sim}400^{\circ}C$ for 1 hr to get $Mg_2Ni$ alloy, and finally the $Mg_2Ni$ alloy powders were ball milled with the additives for 12 hrs. The alloy powders prepared were compacted at room temperature under $7.64tons/cm^2$ into disk type electrodes for the electrochemical measurements. The experimntal results showed that the electrodes prepared with the heat treated alloy powders had a higher discharge capacities than those without heat treatment. The addition of Ni caused an increase of the discharge capacity and the addition of Co improved the cycling characteristics. The electrode prepared by ball milling of $Mg_2Ni$ and 10wt% Ni powders has showed the highest discharge capacity, 546mAh/g.alloy, which was 55% of the theoretical capacity.

  • PDF

The Evaluation of Hydrogenation Properties on $MgH_x-Fe_2O_3$ Composite by Mechanical Alloying (기계적 합금화법으로 제조된 $MgH_x-Fe_2O_3$ 복합재료의 수소화 특성 평가)

  • Seok, Song;Cho, Kyoung-Won;Hong, Hae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.26-31
    • /
    • 2007
  • Hydrogen has a high potential to be a renewable substitute for fossil fuels, because of its high gravimetric energy density and environment friendliness. In particular, Magnesium have attracted much interest since their hydrogen capacity exceeds that of known metal hydrides. One of the approaches to improve the kinetic is addition of metal oxide. In this paper, the effect of $Fe_2O_3$ concentration on the kinetics of Mg hydrogen absorption reaction was investigated. $MgH_x-Fe_2O_3$ composites have been synthesized by hydrogen induced mechanical alloying. The powder synthesized was characterized by XRD, SEM and simultaneous TG, DSC analysis. The hydrogenation behaviors were evaluated by using a sievert's type automatic PCT apparatus. Absorption and desorption kinetics of Mg catalyzed with 5,10 mass% $Fe_2O_3$ are determined at 423, 473, 523, 573, 623K.

Evaluation of Hydrogenation Behavior of MgHx-Graphene Composites by Mechanical Alloying (기계적 합금화법으로 제조한 MgHx-Graphene 복합재료의 수소화 거동 특성)

  • Lee, Soo-Sun;Lee, Na-Ri;Kim, Kyeong-Il;Hong, Tae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.780-786
    • /
    • 2011
  • Mg hydride had high hydrogen capacity (7.6%), lightweight and low cost materials and it was promising hydrogen storage material at high temperature. However, commercial applications of the Mg hydride are currently hindered by its high absorption/desorption temperature, and very slow reaction kinetics. one of the approaches to improve the kinetic is $MgH_x$ intermixed with carbon. And it shows that carbon and carbon allotropes have a beneficial effect on hydrogen sorption in Mg. The graphene is a kind of carbon allotropes which is easily desorbed reaction at low temperatures because its reaction is exothermic. In this work, the effect of graphene concentration on the kinetics of Mg hydrogen absorption reaction was investigated. The $MgH_x$-Graphene composites has been prepared by hydrogen induced mechanical alloy (HIMA). The synthesized powder was characterized by XRD and simultaneous TG, DSC analysis. The hydrogenation behaviors were evaluated by using a sievert's type automatic PCT apparatus. In this research, results of kinetic profiles exhibit hydrogen absorption rate of $MgH_x$-5wt.% and 10wt.% graphene composite, as 1.25wt.%/ms, 10.33wt.%/ms against 0.88wt.%/ms for $MgH_x$ alone at 473K.

Evaluation of Hydrogen Properties on Mg2NiHx-Graphene Composites by Mechanical Alloying (기계적 합금화법으로 제조한 Mg2NiHx-Graphene 복합재료의 수소화 특성 평가)

  • Lee, Young-Sang;Lee, Soo-Sun;Lee, Byung-Ha;Jung, Seok;Hong, Tae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • Mg hydride has a high hydrogen capacity (7.6%), at high temperature, and is a lightweight and low cost material, thus it a promising hydrogen storage material. However, its high operation temperature and very slow reaction kinetics are obstacles to practical application. In order to overcome these disadvantages of Mg hydride, graphene powder was added to it. The addition of graphene has been shown to reduce the operating temperature of dehydrogenation. Moreover, in this report the environmental aspects of $MgH_x$-Graphene composites are investigated by means of the environmental life cycle assessment (LCA) method. $MgH_x$-Graphene mixture was prepared by hydrogen induced mechanical alloy (HIMA). The synthesized powder was characterized by XRD(X-ray Diffraction). The hydrogenation behaviors were evaluated by using a Sievert's type automatic PCT apparatus. Such evaluation of Materials also conducted in the LCA. From the result of P-C-T(Pressure-Composition-Temperature) curves, the $MgH_x$-3wt.% graphene composite was evaluated as having a 5.86wt.% maximum hydrogen storage capacity, at 523K. From absorption kinetic testing, the $MgH_x$-7wt.% graphene composite was evaluated as having a maximum 6.94wt.%/ms hydrogen absorption rate, at 573K. Environment evaluation results for the $MgH_x$-graphene composites and other materials indicated environmental impact from the electric power used and from the materials themselves.

Toughness and Damping Properties of Nanostructured Ni-Al Alloys Produced by Mechanical Alloying Methods (기계적합금화법에 의해 제조된 NiAl 나노금속간화합물 소결체의 인성 및 제진특성)

  • 안인섭;김형범;김영도;김지순
    • Journal of Powder Materials
    • /
    • v.7 no.3
    • /
    • pp.143-148
    • /
    • 2000
  • NiAl alloy powders were prepared by mechanical alloying method and bulk specimens were produced using hot isostatic pressing techniques. This study focused on the transformation behavior and properties of Ni-Al mechanically alloyed powders and bulk alloys. Transformation behavior was investigated by differential scanning calorimeter (DSC), XRD and TEM. Particle size distribution and microstructures of mechanically alloyed powders were studied by particle size analyzer and scanning electron microscope (SEM). After 10 hours milling, XRB peak broadening appeared at the alloyed powders with compositions of Ni-36at%Al to 40at%Al. The NiAl and $Ni_3Al$ intermetallic compounds were formed after water quenching of solution treated powders and bulk samples at $1200^{\circ}C$, but the martensite phase was observed after liquid nitrogen quenching of solution treated powders. However, the formation of $Ni_3Al$ intermetallic compounds were not restricted by fast quenching into liquid nitrogen. It is considered to be caused by fast diffusion of atoms for the formation of stable $\beta$(NiAl) phase and $Ni_3Al$ due to nano sized grains during quenching. Amounts of martensite phase increased as the composition of aluminium component decreased in the Ni-Al alloy, which resulted in the increasing damping properties.

  • PDF

Fabrication and Structural Observation of a Soft Magnetic Composite Powders by Mechanical Alloying (기계적합금화법에 의한 연자성 복합분말의 제조 및 구조관찰)

  • Lee, Chung-Hyo
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.252-257
    • /
    • 2019
  • Fabrication of soft magnetic composite powders for the $Fe_2O_3-Ca$ system by mechanical alloying(MA) has been investigated at room temperature. It is found that soft magnetic composite powders in which CaO is dispersed in ${\alpha}-Fe$ matrix are obtained by MA of $Fe_2O_3$ with Ca for 5 hours. Changes in magnetization and coercivity also reflect the details of the solidstate reduction process of hematite by pure metal of Ca during MA. The saturation magnetization of MA powders increases with increasing MA time and reaches a maximum value of 65 emu/g after 7 hours of MA. The average grain size of ${\alpha}-Fe$ in MA powders, estimated by diffraction line-width, gradually decreases with increasing MA time and reaches 52 nm after 5 hours of MA. It can also be seen that the coercivity of the 5-hour MA sample is fairly high at 190 Oe, suggesting that the grain refinement of already-produced ${\alpha}-Fe$ tends to clearly occur during MA.