• Title/Summary/Keyword: 기계실

Search Result 703, Processing Time 0.03 seconds

Leakage and Rotordynamic Analysis of Spiral-Grooved Pump Seal Based on Three-Control-Volume Theory (나선 홈 펌프 실의 누설 및 로터다이내믹 해석)

  • Ha, Tae-Woong;Lee, An-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.1 s.18
    • /
    • pp.14-22
    • /
    • 2003
  • In this paper the leakage prediction md rotordynamic analysis of an annular seal with a smooth rotor and spiral-grooved stator is performed. For the development of a theoretical model, the three-control-volume analysis of the circumferentially-grooved seal is expanded by considering pressure reduction due to the pumping effect of spiral groove and pressurized flow through the spiral groove. Validation on the present analysis is achieved by comparisons with available experimental data. For the leakage prediction the present analysis generally shows a reasonable agreement with experimental results. Rotordynamic coefficients for rotor speed with spiral angles show same trend, but the magnitudes of rotordynamic coefficients yield differences between analysis and experimental results.

Rotordynamic Analysis of a Labyrinth Seal Using the Moody's Friction-Factor Model (Moody 마찰계수식을 사용한 래버린스 실의 회전체 동역학적 해석)

  • Ha, Tae Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.52-58
    • /
    • 1999
  • The leakage and rotordynamic coefficients of see-through type gas labyrinth seals are determined using a two-control-volume-model analysis with Moody's wall-friction-factor formula which is defined with a large range of Reynolds number and relative roughness. Jet flow theory are used for the calculation of the recirculation velocity in the cavity. For the reaction force from the labyrinth seal, linearized zeroth-order and the first-order perturbation equations are developed for small motion about a centered position. The leakage and rotordynamic coefficient results of the present analysis are compared with Scharrer's theoretical analysis using Blasius' wall-friction-factor formula and Pelletti's experimental results. The comparison shows that the present analysis using Moody's wall-friction-factor formula and Scharrer's theoretical analysis using Blasius' wall-friction-factor formula give the same results for a smooth seal surface and the range of Reynolds number less than $10^5$.

  • PDF

Acceptance Test of a Mechanical Face Seal for Turbopumps (터보펌프용 미케니컬 페이스 실의 수락시험)

  • Kwak, Hyun-D.;Jeon, Seong-Min;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.1 s.40
    • /
    • pp.20-25
    • /
    • 2007
  • A mechanical face seal has been tested in Korea Aerospace Research Institute for turbopump applications. In this paper the acceptance test results of the mechanical face seal are described. By means of simulating a practical operating environment, the performance against leakage of mechanical face seal is monitored. In addition the carbon wear is measured to estimate the life of a mechanical face seal. The test results show the acceptable leakage performance and resonable wear tendency as well. Lastly the repeated test had been carried out to guarantee the endurance performance of mechanical face seal based on the turbopump life.

Analysis of Pre-Swirl Effect for Plain-Gas Seal Using CFD (CFD를 사용한 비접촉식 가스 실의 입구 선회류 영향 해석)

  • Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.26-31
    • /
    • 2013
  • In present 3D CFD study, the method for determining leakage and rotordynamic coefficients of a plain-gas seal is suggested by using the relative coordinate system for steady-state simulation. In order to find the effect of pre-swirl speed at seal inlet, pre-swirl velocity is included as a parameter. Present analysis is verified by comparison with results acquired from Bulk-flow analysis code and published experimental results. The results of 3D CFD rotordynamic coefficients of direct stiffness(K) and cross-coupled stiffness(k) show improvements in prediction. As pre-swirl speed at seal inlet increases, k also increases to destabilize system. However, pre-swirl speed at seal inlet does not show sensitivity to the leakage and rotordynamic coefficients of K and damping(C).

Finite Element Analysis of the Contact Stress Characteristics in Scraper Seals (스크레이퍼 실의 접촉응력 특성에 관한 유한요소해석)

  • Kim, Chung-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.895-902
    • /
    • 1999
  • This paper deals with a numerical study of the tribological contact stress distributions of elastomeric lip seals for oscillating shafts when the sealing interference and band width between the lip ease or contact seals and the shaft are present. Using the finite element method the contact stress and band width of scraper seals are analyzed for the sealing interference including some nonlinearities such as geometrical nonlinearity, material nonlinearity and nonlinear contact boundary condition. The FEM results showed that the contact stress concentrated on the contacting lip zone between the contacting edge of lip and the shaft for the increased interference. In double lip scraper seals, ole maximum contact stress of the dust lip, which is used to exclude foreign contaminants is six times higher than that of the primary sealing lip, which is used to contain lubricants.

The Influence of Combustor Atmospheric Pressure on Flame Characteristics (연소실 분위기 압력이 화염형상에 미치는 영향)

  • Kim, J.R.;Choi, G.M.;Kim, D.J.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1134-1139
    • /
    • 2004
  • Recently, development of flame control scheme has been hot issues in the combustion engineering. It has been held that flame shape can be controllable by pressure inside combustor. The influence of combustor atmospheric pressure on flame shape was investigated in the present study. The flame shape, flammable limit, flame temperature and nitric oxide emission were measured as functions of combustor atmospheric pressure and equivalence ratio. The reaction region became longer and wider with decreasing combustor atmospheric pressure by direct photography, hence reduction of blow off limit. This tendency was also observed in the mean flame temperature distribution. Nitric oxide emission decreased with decreasing combustor atmospheric pressure. Low NOx combustion is ascribed to wide-spread reaction region in the low atmospheric pressure condition. These results demonstrate that flame shape and nitric oxide emission can be controllable with combustor atmospheric pressure.

  • PDF

협회 탐방/본회 - 설비건설업계의 정책수립과 제도개선을 담당하는 대한설비건설협회 정책지원실

  • 대한설비건설협회
    • 월간 기계설비
    • /
    • s.234
    • /
    • pp.41-43
    • /
    • 2010
  • 본지는 지난 2008년 5월호부터 2009년 10월호까지 대한설비건설협회 서울특별시회를 비롯한 13개 시 도회 사무처를 소개함으로써 대한설비건설협회 시 도회의 사업추진 및 업무현황에 대한 회원사의 이해를 도왔다. 또한 전국 13개 시 도회를 대표하여 설비건설업계의 발전 및 위상강화, 회원사의 권익보호 등을 추진하고 있는 본회에 대하여도 지난해 12월호부터 소개하고 있다. 대한설비건설협회 본회는 건설진흥사업 외에 기술 가스진흥사업, 회원봉사 및 조사사업, 정보화 사업, 기획 관리사업, 홍보사업 등 다양한 사업활동을 함으로써 설비건설업계 발전에 견인차 역할을 담당하고 있다. 이번 호에는 설비건설업계의 정책수립과 제도개선을 담당하고 있는 정책지원실을 소개한다.

  • PDF

Estimation of the Fracture Resistance Curve for the Nuclear Piping Using the Standard Compact Tension Specimen (표준 CT시험편을 이용한 실배관 파괴저항 곡선 예측)

  • Park, Hong-Sun;Heo, Yong;Koo, Jae-Mean;Seok, Chang-Sung;Park, Jae-Sil;Cho, Sung-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.930-937
    • /
    • 2009
  • The estimation method of the fracture resistance curve for the pipe specimen was proposed using the load ratio method for the standard specimen. For this, the calculation method of the load - CMOD curve for the pipe specimen with the common format equation(CFE) was proposed by using data of the CT specimen. The proposed method agreed well with experimental data. The J-integral value and the crack extension were calculated from the estimated load - CMOD data. The fracture resistance curve was estimated from the calculated J-integral and the crack extension. From these results, it have been seen that the proposed method is reliable to estimate the J-R curve of the pipe specimen.

Behavior Analysis of Double Lip Seal with Interference (간섭량에 따른 이중 립 실의 거동 해석)

  • Jung, H.G.;Yoo, J.C.;Park, T.J.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1576-1580
    • /
    • 2007
  • Typical lip seals are widely used as sealing mechanism of rotary and reciprocating shaft. Double lip seal has comparatively high stiffness and dynamic radial eccentricity. Usually material of these seals is made of elastomer and nonlinear finite element analysis is required to analyze behaviour of this material because Young's modulus is varied with working load. In this paper, MSC MARC/MENTAT is used for nonlinear analysis of double lip seal with pressure variation and interference. The contact normal force of double lip seal between lip and shaft is analyzed to reduce power loss when shaft rotates.

  • PDF

Lower Bound Net-Section Limit Loads for Circumferential Part-Through Surface Cracked Pipes under Combined Pressure and Bending (내압과 굽힘의 복합하중을 받는 원주방향 표면균열 배관에 대한 하한계 실단면 한계하중)

  • Oh, Chang-Kyun;Kim, Jong-Sung;Jin, Te-Eun;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1772-1777
    • /
    • 2007
  • This paper provides plastic limit loads of pipes with constant-depth, circumferential part-through surface cracks under combined pressure and bending. A key issue is to postulate discontinuous hoop stress distributions in the net-section. Validity of the proposed limit load solutions is checked against the results from three-dimensional (3-D) finite element (FE) limit analyses using elastic-perfectly plastic material behavior.

  • PDF