Hong S. H.;Lee Y. W.;Hwang W G.;Ki Ch. D.;Kim Y. B.
Journal of the Korean Institute of Gas
/
v.2
no.3
/
pp.88-95
/
1998
Vibration analysis of rotating machinery can give an indication of possible faults thus allowing maintenance before further damage occurs. Current predictive maintenance system installed in Pyung-tak has the ability to diagnose the mechanical problems within the LNG Pump when the vibration exceeds preset overall alarm levels. In this study, LNG pump auto-diagnosis system based upon Windows NT and DSP Board is developed. This system analysis velocity signal acquired from dual accelerometer input monitor system to diagnose pump condition. Many plots which display machine condition are shown and features of vibration are stored in every time. If the fault is found, the system diagnoses automatically using expert system and trend monitoring. Operator checks pump condition intuitively using personal computer monitor.
Proceedings of the Korean Operations and Management Science Society Conference
/
1995.04a
/
pp.504-509
/
1995
컴퓨터에 의한 생산시스템의 통합체계화와 온-라인화에 따라 자동화된 설비진단 방법이 요구되어지고 있다. 이에 따라 기계설비에 각종 센서를 부착하여 실시간으로 수집된 출력신호를 이용하여 기계설비를 온-라인으로 감시하는 여러가지 기법들이 제시되고 있다. 본 연구에서는 진동센서로부터의 신호를 radial 함수에 근거한 다단계 뉴럴 네트워크(Neural Network)로 모형화하여 기계설비 상태를 감시하는 방법을 제시한다. 또한 다단계 모델링 분석을 통하여 신호를 예측하고 설비고장 원인을 분류하며, 다른 모형과의 비교를 통하여 효율성 평가와 최적 단계수를 결정하였다. 온라인 학습 알고리즘은 recursive least squares와 clustering 방법을 이용한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.11a
/
pp.205-209
/
2007
생산 현장에서 기기의 운영과 관리는 제품의 품질 및 기업의 수익성과 직결된다. 그러나 정상적인 작동을 하고 있는 시스템에서 고장의 시점과 고장의 종류를 예측하기 곤란하며 따라서 잔여 가동 시간이 얼마인지도 예측하기 힘들다. 본 논문에서는 산업용 기계, 공정과 의료기기 등 신뢰성이 요구되는 Brushless DC 모터의 상태 변화의 추이를 관찰하여 진단의 특징점으로 사용한다. 본 논문에서 제안한 상태천이 모텔은 고장의 시점과 고장의 종류를 예측할 수 있으며 유지보수의사결정에 도움을 줄 수 있다.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2023.05a
/
pp.275-276
/
2023
산업 현장의 기계 시설물 고장 문제는 큰 인명피해와 경제적 손실을 초래할 수 있기 때문에, 기계 시설물의 상태를 기반하여 고장을 진단하는 것은 대단히 중요하다. 따라서, 본 연구에서는 전류 센서 데이터를 활용하여, 시설물의 고장 여부를 진단할 수 있는 알고리즘을 제안한다. 본 연구에 활용된 전류 센서 데이터는 x, y, z축을 가진 3상 전류 데이터로 구성되어 있으며, 2kHz로 1초간 샘플링 되어 있다. 본 연구에서는 2차원적 특성을 가지는 전류 센서 데이터를 분석하기 위해 CNN(Convolution Neural Network)을 활용한다. 시설물의 고장진단에 가장 적합한 모델을 선정하기 위해 CNN의 대표적인 백본 네트워크를 활용하여, 결과를 비교하였다. 실험 결과, 본 연구에서 구성한 후보 백본 네트워크 중 ResNet의 분류 정확도가 98.5%로 가장 높게 나타났다.
Lim, Sang Sun;Kim, Wooshik;Kim, Tae Yun;Chai, Jang Bom
Transactions of the Korean Society of Mechanical Engineers A
/
v.41
no.1
/
pp.57-62
/
2017
The purpose of this study is to develop a method for diagnosing the degree of gradual degradation of a reciprocating pump caused by continuous use as a water supply pump in a nuclear power plant. Normally, the progress of such degradation is too slow to be noticed. Hence, it is difficult to determine the degree of degradation using the existing diagnostic methods. In this paper, we propose a new method by which the normal state and the degraded state of the pump can be differentiated, so that the degree of degradation can be identified. First, an emulator was developed using FPGA by providing the parameters of the pump under normal state, so that the emulator generates the information of the pump in the healthy state. Then, by comparing this information with the parameters received from various output sensors of the emulator during the current state, it is possible to identify and measure the degree of gradual degradation. This paper presents some of the results obtained during the development process, and results that show how the emulator operates, by comparing the data collected from an actual pump.
Proceedings of the Korean Society of Precision Engineering Conference
/
1994.10a
/
pp.20-25
/
1994
절삭공정의 자동화의 무인화를 달성하기 위해서는 경험을 가진 작업자의 역활이 컴퓨터에 의한 자동적인 감시 및 제어시스템으로 대체되어야 한다. 특히 공작기계에서 발생할 수 있는 자체의 고장이나 절삭과정중에 발생하는 이상상태를 실시간으로 검출하여 원인을 자동적으로 진달 할 수 있어야 한다. 절삭가공 공작기계의 이상상태 감시 및 진단의 현황을 살펴보면 주로 공구상태의 감시와 채터 감시가 연구의 대상 이 되고 있다. 공구상태의 감시는 공구의 마모와 파단을 검출하고 있다. 이 중에서 공구의 파단은 발생 즉시 실시간으로 감시되어야 한다. 밀링작업에서는 1회전 이내의 공구회전에 파단을 검출하고 기계를 정지시켜야 한다. 최근의 절삭가공에서는 절삭공구로 강력절삭을 위해 고경도 재료를 사용함에 따라 공구의 파단이 빈번하게 발생하고 있다. 정면밀링과 같은 단속절상에서는 절삭날이 큰 충격을 받으므로 더욱 파단에 대한 감시가 필요하다.
Transactions of the Korean Society of Mechanical Engineers B
/
v.35
no.12
/
pp.1351-1358
/
2011
To approximate the threshold of the fault detection and diagnosis (FDD) system, validation of the measurements is mandatory. Naturally, the system shows uncertainties due to measuring sensors - mostly thermocouples or RTDs - and due to repeatability. The uncertainty of a thermocouple comes from natural variation or a drift of the thermocouple measurement. Considering the natural variation behaves like zero-mean white noise, its natural variation can be characterized closely by the steady-state standard deviation. However, residuals between measurements and no-fault references in FDD systems show a statistical distribution with various uncertainties. In this paper, steady-state variations of measurement residuals were investigated by utilizing built-in temperature sensors in a heat pump for the model development and the final application.
Journal of the Institute of Convergence Signal Processing
/
v.21
no.3
/
pp.121-126
/
2020
Sound-based machine fault diagnosis is the automatic detection of abnormal sound in the acoustic emission signals of the machines. Conventional methods of using mathematical models were difficult to diagnose machine failure due to the complexity of the industry machinery system and the existence of nonlinear factors such as noises. Therefore, we want to solve the problem of machine fault diagnosis as a deep learning-based image classification problem. In the paper, we propose a CNN-based automatic machine fault diagnosis method using Spectrogram images. The proposed method uses STFT to effectively extract feature vectors from frequencies generated by machine defects, and the feature vectors detected by STFT were converted into spectrogram images and classified by CNN by machine status. The results show that the proposed method can be effectively used not only to detect defects but also to various automatic diagnosis system based on sound.
Nd:Yag 레이저의 제2고조파와 광대역 모드 없는 레이저를 광원으로 사용하고 이중회절발분광 기에 설치된 다채널광검출기로 분광된 CARS 스펙트럼을 레이저 펄스마다 측정 할 수 있는 광 대역 CARS 분광기를 제작하였다. CARS 온도측정 불확정도는 300K에서 1300K까지는 1.5% 이내였다. CARS 기술을 이용하여 분젠버너의 화염면에서의 온도 분포를 측정하였으며, 대향류 버너의 화염내부의 온도 분포 및 CO 농도분포를 측정하였다. 이러한 CARS 기술은 정상상태의 연소진단에 응용할 수 있을 뿐만 아니라 레이저 펄스마다 측정되는 온도의 분포함수를 조사하면 앞으로 난류연소의 진단에도 응용이 가능하며, 내연기관 등과 같이 연속폭발연소 상태의 기체의 온도나 농도 측정이 가능하다. 본 연구에서 연구된 CARS 기술의 온도 측정정확도는 약 2% 이 내이고 농도 측정은 측정기체의 농도가 상온에서는 약 0.1% 이상, 1500K 이상의 고온에서는 0.3%이상이면 가능하다.
Transactions of the Korean Society of Mechanical Engineers A
/
v.37
no.11
/
pp.1315-1321
/
2013
This study presents a prognostic technique for the damage state of a ball bearing. A stochastic bearing fatigue defect-propagation model is applied to estimate the damage progression rate. The damage state and the time to failure are computed by using RMS data from noisy acceleration signals. The parameters of the stochastic defect-propagation model are identified by conducting a series of run-to-failure tests for ball bearings. A regularized particle filter is applied to predict the damage progression rate and update the degradation state based on the acceleration RMS data. The future damage state is predicted based on the most recently measured data and the previously predicted damage state. The developed method was validated by comparing the prognostic results and the test data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.