• Title/Summary/Keyword: 기계데이터

Search Result 2,688, Processing Time 0.036 seconds

A study on data collection environment and analysis using virtual server hosting of Azure cloud platform (Azure 클라우드 플랫폼의 가상서버 호스팅을 이용한 데이터 수집환경 및 분석에 관한 연구)

  • Lee, Jaekyu;Cho, Inpyo;Lee, Sangyub
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.329-330
    • /
    • 2020
  • 본 논문에서는 Azure 클라우드 플랫폼의 가상서버 호스팅을 이용해 데이터 수집 환경을 구축하고, Azure에서 제공하는 자동화된 기계학습(Automated Machine Learning, AutoML)을 기반으로 데이터 분석 방법에 관한 연구를 수행했다. 가상 서버 호스팅 환경에 LAMP(Linux, Apache, MySQL, PHP)를 설치하여 데이터 수집환경을 구축했으며, 수집된 데이터를 Azure AutoML에 적용하여 자동화된 기계학습을 수행했다. Azure AutoML은 소모적이고 반복적인 기계학습 모델 개발을 자동화하는 프로세스로써 기계학습 솔루션 구현하는데 시간과 자원(Resource)를 절약할 수 있다. 특히, AutoML은 수집된 데이터를 분류와 회귀 및 예측하는데 있어서 학습점수(Training Score)를 기반으로 보유한 데이터에 가장 적합한 기계학습 모델의 순위를 제공한다. 이는 데이터 분석에 필요한 기계학습 모델을 개발하는데 있어서 개발 초기 단계부터 코드를 설계하지 않아도 되며, 전체 기계학습 시스템을 개발 및 구현하기 전에 모델의 구성과 시스템을 설계해볼 수 있기 때문에 매우 효율적으로 활용될 수 있다. 본 논문에서는 NPU(Neural Processing Unit) 학습에 필요한 데이터 수집 환경에 관한 연구를 수행했으며, Azure AutoML을 기반으로 데이터 분류와 회귀 등 가장 효율적인 알고리즘 선정에 관한 연구를 수행했다.

  • PDF

Big Data 분석을 위한 Machine Learning

  • Lee, Jae-Gu;Lee, Tae-Hun;Yun, Seong-Ro
    • Information and Communications Magazine
    • /
    • v.31 no.11
    • /
    • pp.14-26
    • /
    • 2014
  • 본고는 빅데이터 시대에 새로운 가치를 창출할 수 있는 정보 분석을 위한 기계학습을 설명하고자 한다. 기계학습의 일반적 정의와 특성, 그리고 빅데이터 특성에 의한 기계학습의 변화를 확인하고 특별히 다양한 변화 중에서 분산 및 병렬화를 통한 스케일러블 기계학습을 중점으로 주어진 빅데이터를 효율적으로 분석할 수 있는 다양한 플랫폼들과 프레임워크들을 설명한다. 더불어 실제 다양한 응용 활용을 제공하고 있는 Google API 같은 빅데이터 분석 기계학습 프로젝트들을 통해서 기계학습을 통한 빅데이터 분석에 대한 폭넓은 이해를 전달하고자 한다.

Data preprocessing for efficient machine learning (효율적인 기계학습을 위한 데이터 전처리)

  • Kim, Dong-Hyun;Yoo, Seung-Eon;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.49-50
    • /
    • 2019
  • 데이터를 기반으로 한 기계학습은 데이터의 양, 학습 모델, 그리고 데이터의 특징 등 다양한 환경에 민감한 특징을 지니고 있어, 보다 효율적인 기계학습을 위해 데이터의 전처리 과정을 필요로 한다. 데이터의 전처리 과정이란 특징 선택(Feature selection), 노이즈 데이터의 제거, 차원 감소(Demension reduction), 클러스터링(Clustering) 등 보다 효율적인 기계학습을 위한 방법이다. 따라서 본 논문에서는 다양한 환경에서 보다 효율적인 기계학습을 위한 데이터 전처리 기술의 종류 및 간단한 특징에 대해 서술한다.

  • PDF

Evaluating Korean Machine Reading Comprehension Generalization Performance using Cross and Blind Dataset Assessment (기계독해 데이터셋의 교차 평가 및 블라인드 평가를 통한 한국어 기계독해의 일반화 성능 평가)

  • Lim, Joon-Ho;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.213-218
    • /
    • 2019
  • 기계독해는 자연어로 표현된 질문과 단락이 주어졌을 때, 해당 단락 내에 표현된 정답을 찾는 태스크이다. 최근 기계독해 태스크도 다른 자연어처리 태스크와 유사하게 BERT, XLNet, RoBERTa와 같이 사전에 학습한 언어모델을 이용하고 질문과 단락이 입력되었을 경우 정답의 경계를 추가 학습(fine-tuning)하는 방법이 우수한 성능을 보이고 있으며, 특히 KorQuAD v1.0 데이터셋에서 학습 및 평가하였을 경우 94% F1 이상의 높은 성능을 보이고 있다. 본 논문에서는 현재 최고 수준의 기계독해 기술이 학습셋과 유사한 평가셋이 아닌 일반적인 질문과 단락 쌍에 대해서 가지는 일반화 능력을 평가하고자 한다. 이를 위하여 첫번째로 한국어에 대해서 공개된 KorQuAD v1.0 데이터셋과 NIA v2017 데이터셋, 그리고 엑소브레인 과제에서 구축한 엑소브레인 v2018 데이터셋을 이용하여 데이터셋 간의 교차 평가를 수행하였다. 교차 평가결과, 각 데이터셋의 정답의 길이, 질문과 단락 사이의 오버랩 비율과 같은 데이터셋 통계와 일반화 성능이 서로 관련이 있음을 확인하였다. 다음으로 KorBERT 사전 학습 언어모델과 학습 가능한 기계독해 데이터 셋 21만 건 전체를 이용하여 학습한 기계독해 모델에 대해 블라인드 평가셋 평가를 수행하였다. 블라인드 평가로 일반분야에서 학습한 기계독해 모델의 법률분야 평가셋에서의 일반화 성능을 평가하고, 정답 단락을 읽고 질문을 생성하지 않고 질문을 먼저 생성한 후 정답 단락을 검색한 평가셋에서의 기계독해 성능을 평가하였다. 블라인드 평가 결과, 사전 학습 언어 모델을 사용하지 않은 기계독해 모델 대비 사전 학습 언어 모델을 사용하는 모델이 큰 폭의 일반화 성능을 보였으나, 정답의 길이가 길고 질문과 단락 사이 어휘 오버랩 비율이 낮은 평가셋에서는 아직 80%이하의 성능을 보임을 확인하였다. 본 논문의 실험 결과 기계 독해 태스크는 특성 상 질문과 정답 사이의 어휘 오버랩 및 정답의 길이에 따라 난이도 및 일반화 성능 차이가 발생함을 확인하였고, 일반적인 질문과 단락을 대상으로 하는 기계독해 모델 개발을 위해서는 다양한 유형의 평가셋에서 일반화 평가가 필요함을 확인하였다.

  • PDF

Generating Training Dataset of Machine Learning Model for Context-Awareness in a Health Status Notification Service (사용자 건강 상태알림 서비스의 상황인지를 위한 기계학습 모델의 학습 데이터 생성 방법)

  • Mun, Jong Hyeok;Choi, Jong Sun;Choi, Jae Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.1
    • /
    • pp.25-32
    • /
    • 2020
  • In the context-aware system, rule-based AI technology has been used in the abstraction process for getting context information. However, the rules are complicated by the diversification of user requirements for the service and also data usage is increased. Therefore, there are some technical limitations to maintain rule-based models and to process unstructured data. To overcome these limitations, many studies have applied machine learning techniques to Context-aware systems. In order to utilize this machine learning-based model in the context-aware system, a management process of periodically injecting training data is required. In the previous study on the machine learning based context awareness system, a series of management processes such as the generation and provision of learning data for operating several machine learning models were considered, but the method was limited to the applied system. In this paper, we propose a training data generating method of a machine learning model to extend the machine learning based context-aware system. The proposed method define the training data generating model that can reflect the requirements of the machine learning models and generate the training data for each machine learning model. In the experiment, the training data generating model is defined based on the training data generating schema of the cardiac status analysis model for older in health status notification service, and the training data is generated by applying the model defined in the real environment of the software. In addition, it shows the process of comparing the accuracy by learning the training data generated in the machine learning model, and applied to verify the validity of the generated learning data.

A study on the standardization strategy for building of learning data set for machine learning applications (기계학습 활용을 위한 학습 데이터세트 구축 표준화 방안에 관한 연구)

  • Choi, JungYul
    • Journal of Digital Convergence
    • /
    • v.16 no.10
    • /
    • pp.205-212
    • /
    • 2018
  • With the development of high performance CPU / GPU, artificial intelligence algorithms such as deep neural networks, and a large amount of data, machine learning has been extended to various applications. In particular, a large amount of data collected from the Internet of Things, social network services, web pages, and public data is accelerating the use of machine learning. Learning data sets for machine learning exist in various formats according to application fields and data types, and thus it is difficult to effectively process data and apply them to machine learning. Therefore, this paper studied a method for building a learning data set for machine learning in accordance with standardized procedures. This paper first analyzes the requirement of learning data set according to problem types and data types. Based on the analysis, this paper presents the reference model to build learning data set for machine learning applications. This paper presents the target standardization organization and a standard development strategy for building learning data set.

Machine Learning Technology Trends for Big Data Processing (빅데이터 활용을 위한 기계학습 기술동향)

  • Lim, S.J.;Min, O.K.
    • Electronics and Telecommunications Trends
    • /
    • v.27 no.5
    • /
    • pp.55-63
    • /
    • 2012
  • 빅데이터 시대를 맞이하여 이를 분석하여 지능형 서비스로 활용할 수 있는 기술로 인공지능 기술이 다시 관심을 받고 있다. 본고에서는 인공지능의 여러 요소 기술 중 기계학습(machine learning) 분야의 빅데이터 처리를 위한 동향을 소개한다. 현재 사용 가능한 병렬처리 기반의 기계학습, 빅데이터를 이용한 기계학습 기반으로 진행되고 있는 프로젝트, 다양한 분야에 쉽게 기계학습을 적용할 수 있는 domain adaptation 기술에 대해서 정리한다.

  • PDF

The data representation to support dynamic languages on the Java virtual machine (자바가상기계에서의 동적 언어의 지원을 위한 데이터 표현)

  • 박관민;정민수;이준석;윤성순;윤기송
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.412-414
    • /
    • 1999
  • 본 논문에서는 동적 언어의 데이터가 자바 가상 기계에 적합한 수행을 할 수 있도록 자바가상기계에 알맞도록 동적 언어에 대한 새로운 데이터 표현 방법을 제시한다. 그리고 자바의 다형성을 이용하여 새로운 클래스 라이브러리를 자바가상기계에 추가한다. 이러한 자바 가상 기계의 수행을 추적함으로써 동적 언어의 데이터 표현에 대한 유효성을 검증한다.

  • PDF

Development of Wireless Data Carrier for CNC Machine Tools (CNC 공작기계용 무선데이터 캐리어 개발)

  • Kim, Gwan-Hyung;Jeong, Young-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.906-907
    • /
    • 2014
  • 금형이나 부품절삭가공 등에 사용하고 있는 공작기계(밀링, 선반)는 Gcode라는 좌표값에 따라 공작기계를 동작시킨다. 공작기계가 많을 경우에는 휴대용 데이터 캐리어(data carrier) 이용하여 각각의 공작기계에 Gcode 데이터를 다운로딩 하고 있다. 현재에는 이러한 불편함을 해소하기 위하여 고가의 최신기술을 도입한 UTP, Wi-Fi, USB, CF 등을 기반으로 Gcode 데이터를 전송하는 시스템을 개발하고 있지만, 과거에 구입한 구형장비의 경우에는 RS-232를 사용하고 있어 데이터 전송이 불편함이 있다. 본 논문에서는 ATmega128을 활용하여 WGTE(Wireless Gcode Transfer Equipment)를 개발하여 시중에 상용화 되고 있는 고가의 장비를 대신할 수 있는 블루투스(bluetooth) 기반의 WGTE를 개발하고자 한다.

  • PDF

Extension and Management of Verb Phrase Patterns based on Lexicon Reconstruction and Target Word Information (사전 재구성과 대역어 정보를 통한 동사구 패턴의 확장 및 관리)

  • Hong, Mun-Pyo;Kim, Young-Kil;Ryu, Chul;Choi, Sung-Kwon;Park, Sang-Kyu
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.103-107
    • /
    • 2002
  • 데이터 기반 기계번역의 성공여부는 대량의 데이터를 단기간에 구축하는 방법과, 또 구축된 데이터에 대한 효과적인 관리 방법이 좌우한다고 할 수 있다. 대표적인 데이터 기반 기계번역 방법론인 예제 기반 기계번역 방식이나 패턴 기반 기계번역 방식에서는 최소한의 학습 내지는 학습과정 없이 데이터를 구축하는 데에 연구가 중점적으로 이루어져왔으나, 데이터의 관리 문제에 대해서는 많은 연구가 이루어지지 못하였다. 그러나 데이터의 확장 못지않게 데이터의 효율적인 관리도 데이터 기반 기계번역 시스템의 개발에서 매우 중요하다. 이 논문에서는 사/피동 링크 등을 이용하여 사전을 재구성하는 것이 데이터의 일관성과 관리성을 향상시키고, 이론적인 면에서는 정보 기술상의 잉여성을 줄인다는 점을 보인다. 또한 이러한 정보에 기반하여 기구축된 동사구 패턴으로부터 대역어 정보를 이용하여 새로운 패턴을 만들어내는 방법론도 제시한다.

  • PDF