• Title/Summary/Keyword: 긍정어휘

Search Result 80, Processing Time 0.024 seconds

The Effects of Play Activities in Forest on the Emotional Vocabulary Change of Children (숲놀이 활동이 유아의 감정어휘 변화에 미치는 영향)

  • Jandg, Hyun Hee;Kim, Mi Jin;Yun, Suk Yonng;Choi, Byung Jin
    • Journal of the Korean Society of Floral Art and Design
    • /
    • no.41
    • /
    • pp.3-12
    • /
    • 2019
  • The purpose of this study was to investigate the effect of forest play activities on children's emotional vocabulary change. Forest play activities were conducted for 498 children aged 4 to 5 years old who visited the environmental training in G city for forest play activity for 1 hour. As a result, positive vocabulary was significantly improved from 0.95±0.78 before forest play to 1.15±1.21 after forest play(p=.003) and negative vocabulary was significantly decreased from 1.27±1.58 to 0.41±1.10(p=.000). In the case of male children, positive vocabulary was increased significantly from 0.96±0.82 to 1.36±1.24(p=.000), in the case of negative vocabulary, it decreased significantly from 1.42±1.74 to 0.55±1.30(p=.000). In the case of female children, negative vocabulary was significantly decreased from 1.12±1.37 to 0.26±0.26(p=.000), but the positive vocabulary increase was not significant(p=.851). As a result of age, for a 4-year-old children, positive vocabulary did not show significant difference between before and after forest play(p=.471), and negative vocabulary was significantly increased from 1.04 ± 1.42 before forest play to 0.41±1.16 after forest play(p=.000). For a 5-year-old children, positive vocabulary was increased significantly from 0.96±0.85 to 1.23±1.21(p=.001) and negative vocabulary was decreased significantly from 1.41±1.65 to 0.41±1.06(p=.000). As a result of this study, it was found that play activities using various natural objects in the forest were directly related to nature, resulting in positive vocabulary increase and negative vocabulary decrease.

A Study on Sentiment Analysis of Words using Normalized PMI (NPMI를 이용한 어휘의 감성분석 연구)

  • Lyu, Ki-Gon;Kim, Hyeon-Cheol
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1333-1336
    • /
    • 2015
  • 감성분석은 최근 오피니언 마이닝에서 주목받고 있는 분야로써, 특정 주제, 상품, 유명인사 등에 대한 사람들의 반응을 긍정 또는 부정으로 구분하거나 점수를 이용하여 긍정 또는 부정의 강도를 분석하는데 이용되고 있다. PMI(pointwise mutual information)와 SO-PMI(semantic orientation from pointwise mutual information)는 비교적 빠르고 간편하게 극성을 판단할 수 있다는 장점이 있지만, 어휘와 기준 어휘 사이의 극성 값이 넓은 범위를 갖는다는 단점이 있다. 본 논문에서는 일상적인 언어 사용 환경에서 나타나는 어휘로부터 감성을 분석하고자 하였다. 특히 어휘의 극성 값 편차로 인해 나타날 수 있는 어려움을 보완하기 위해 NPMI(normalized pointwise mutual information)를 이용하여 어휘의 감성을 분석하였다. PMI와 NPMI를 비교 분석한 결과 어휘의 감성 강도를 나타내는 데 있어서 밀집도에서 큰 차이를 보였다.

Performance and Limitations of a Korean Sentiment Lexicon Built on the English SentiWordNet (영어 SentiWordNet을 이용하여 구축한 한국어 감성어휘사전의 성능 평가와 한계 연구)

  • Shin, Donghyok;Kim, Sairom;Cho, Donghee;Nguyen, Minh Dieu;Park, Soongang;Eo, Keonjoo;Nam, Jeesun
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.189-194
    • /
    • 2016
  • 본 연구는 다국어 감성사전 및 감성주석 코퍼스 구축 프로젝트인 MUSE 프로젝트의 일환으로 한국어 감성사전을 구축하기 위해 대표적인 영어 감성사전인 SentiWordNet을 이용하여 한국어 감성사전을 구축하는 방법의 의의와 한계점을 검토하는 것을 목적으로 한다. 우선 영어 SentiWordNet의 117,659개의 어휘중에서 긍정/부정 0.5 스코어 이상의 어휘를 추출하여 구글 번역기를 이용해 자동 번역하는 작업을 실시하였다. 그 중에서 번역이 되지 않거나, 중복되는 경우를 제거하고, 언어학 전문가들의 수작업으로 분류해낸 결과 3,665개의 감성어휘를 획득할 수 있었다. 그러나 이마저도 병명이나 순수 감성어휘로 보기 어려운 사례들이 상당수 포함되어 있어 실제 이를 코퍼스에 적용하여 감성어휘를 자동 판별했을 때에 맛집 코퍼스에서의 재현율(recall)이 긍정과 부정에서 각각 47.4%, 37.7%, IT 코퍼스에서 각각 55.2%, 32.4%에 불과하였다. 이와 더불어 F-measure의 경우, 맛집 코퍼스에서는 긍정과 부정의 값이 각각 62.3%, 38.5%였고, IT 코퍼스에서는 각각 65.5%, 44.6%의 낮은 수치를 보여주고 있어, SentiWordNet 기반의 감성사전은 감성사전으로서의 역할을 수행하기에 충분하지 않은 것으로 나타났다. 이를 통해 한국어 감성사전을 구축할 때에는 한국어의 언어적 속성을 고려한 체계적인 접근이 필요함을 역설하고, 현재 한국어 전자사전 DECO에 기반을 두어 보완 확장중인 SELEX 감성사전에 대해 소개한다.

  • PDF

Performance and Limitations of a Korean Sentiment Lexicon Built on the English SentiWordNet (영어 SentiWordNet을 이용하여 구축한 한국어 감성어휘사전의 성능 평가와 한계 연구)

  • Shin, Donghyok;Kim, Sairom;Cho, Donghee;Nguyen, Minh Dieu;Park, Soongang;Eo, Keonjoo;Nam, Jeesun
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.189-194
    • /
    • 2016
  • 본 연구는 다국어 감성사전 및 감성주석 코퍼스 구축 프로젝트인 MUSE 프로젝트의 일환으로 한국어 감성사전을 구축하기 위해 대표적인 영어 감성사전인 SentiWordNet을 이용하여 한국어 감성사전을 구축하는 방법의 의의와 한계점을 검토하는 것을 목적으로 한다. 우선 영어 SentiWordNet의 117,659개의 어휘중에서 긍정/부정 0.5 스코어 이상의 어휘를 추출하여 구글 번역기를 이용해 자동 번역하는 작업을 실시하였다. 그 중에서 번역이 되지 않거나, 중복되는 경우를 제거하고, 언어학 전문가들의 수작업으로 분류해 낸 결과 3,665개의 감성어휘를 획득할 수 있었다. 그러나 이마저도 병명이나 순수 감성어휘로 보기 어려운 사례들이 상당수 포함되어 있어 실제 이를 코퍼스에 적용하여 감성어휘를 자동 판별했을 때에 맛집 코퍼스에서의 재현율(recall)이 긍정과 부정에서 각각 47.4%, 37.7%, IT 코퍼스에서 각각 55.2%, 32.4%에 불과하였다. 이와 더불어 F-measure의 경우, 맛집 코퍼스에서는 긍정과 부정의 값이 각각 62.3%, 38.5%였고, IT 코퍼스에서는 각각 65.5%, 44.6%의 낮은 수치를 보여주고 있어, SentiWordNet 기반의 감성사전은 감성사전으로서의 역할을 수행하기에 충분하지 않은 것으로 나타났다. 이를 통해 한국어 감성사전을 구축할 때에는 한국어의 언어적 속성을 고려한 체계적인 접근이 필요함을 역설하고, 현재 한국어 전자사전 DECO에 기반을 두어 보완 확장중인 SELEX 감성사전에 대해 소개한다.

  • PDF

Movie Corpus Emotional Analysis Using Emotion Vocabulary Dictionary (감정 어휘 사전을 활용한 영화 리뷰 말뭉치 감정 분석)

  • Jang, Yeonji;Choi, Jiseon;Park, Seoyoon;Kang, Yejee;Kang, Hyerin;Kim, Hansaem
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.379-383
    • /
    • 2021
  • 감정 분석은 텍스트 데이터에서 인간이 느끼는 감정을 다양한 감정 유형으로 분류하는 것이다. 그러나 많은 연구에서 감정 분석은 긍정과 부정, 또는 중립의 극성을 분류하는 감성 분석의 개념과 혼용되고 있다. 본 연구에서는 텍스트에서 느껴지는 감정들을 다양한 감정 유형으로 분류한 감정 말뭉치를 구축하였는데, 감정 말뭉치를 구축하기 위해 심리학 모델을 기반으로 분류한 감정 어휘 사전을 사용하였다. 9가지 감정 유형으로 분류된 한국어 감정 어휘 사전을 바탕으로 한국어 영화 리뷰 말뭉치에 9가지 감정 유형의 감정을 태깅하여 감정 분석 말뭉치를 구축하고, KcBert에 학습시켰다. 긍정과 부정으로 분류된 데이터로 사전 학습된 KcBert에 9개의 유형으로 분류된 데이터를 학습시켜 기존 모델과 성능 비교를 한 결과, KcBert는 다중 분류 모델에서도 우수한 성능을 보였다.

  • PDF

A Sentiment Classification System Using Feature Extraction from Seed Words and Support Vector Machine (종자 어휘를 이용한 자질 추출과 지지 벡터 기계(SVM)을 이용한 문서 감정 분류 시스템의 개발)

  • Hwang, Jae-Won;Jeon, Tae-Gyun;Ko, Young-Joong
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.938-942
    • /
    • 2007
  • 신문 기사 및 상품 평은 특정 주제나 상품을 대상으로 하여 글쓴이의 감정과 의견이 잘 나타나 있는 대표적인 문서이다. 최근 여론 조사 및 상품 의견 조사 등 다양한 측면에서 대용량의 문서의 의미적 분류 및 분석이 요구되고 있다. 본 논문에서는 문서에 나타난 내용을 기준으로 문서가 나타내고 있는 감정을 긍정과 부정의 두 가지 범주로 분류하는 시스템을 구현한다. 문서 분류의 시작은 감정을 지닌 대표적인 종자 어휘(seed word)로부터 시작하며, 자질의 선정은 한국어 특징상 감정 및 감각을 표현하는 명사, 형용사, 부사, 동사를 대상으로 한다. 가중치 부여 방법은 한글 유의어 사전을 통해 종자 어휘의 의미를 확장하여 각각의 가중치를 책정한다. 단어 벡터로 표현된 입력 문서를 이진 분류기인 지지벡터 기계를 이용하여 문서에 나타난 감정을 판단하는 시스템을 구현하고 그 성능을 평가한다.

  • PDF

A Study on the Analysis of Emotion-expressing Vocabulary for Realtime Conversion of Avatar′s Countenances (아바타의 실시간 표정변환을 위한 감정 표현 어휘 분석에 관한 연구)

  • 이영희;정재욱
    • Archives of design research
    • /
    • v.17 no.2
    • /
    • pp.199-208
    • /
    • 2004
  • In cyberspace based on internet, users constitute communities and interact one another. Avatar means not only the other self but also the 'another being' that describes oneself in the cyberspace. If user's avatar shows expressive faces and behaves according to his thinking and emotion, he will have a feel of reality much more in the cyberspace. If avatar's countenances can be animated by just typing characters in avatar-based chat communication, the user is able to express his emotions more effectively. In this study, emotion-expressing vocabulary is analyzed and classified. Emotion-expressing vocabulary is essential to develop self-reactive avatar system in which avatar's countenances are automatically converted according to the words typed by users at chat. The results are as follows; First, emotion-expressing vocabulary selected out of Korean adjectives and intransitive verbs is made up of 209 words and is classified into 25 groups. Second, there are only 2 groups out of the 25 groups for positive expressions and others are for negative expressions. Therefore, negative expressions are more abundant than positive expressions in Korean vocabulary. Third, avatar's countenances are modelled according to the 25 groups by using the Quantification Method 3. The result shows that the emotion-expressing vocabulary has dose relations with avatar's countenances and is useful to communicate users' emotions. However, this study has some limits, in that Korean linguistical structure - the whole meaning of context - cannot be interpreted quantitatively.

  • PDF

Chatbots and Korean EFL Students' English Vocabulary Learning (챗봇 활용이 국내 영어 학습자의 어휘 습득에 미치는 영향)

  • Kim, Na-Young
    • Journal of Digital Convergence
    • /
    • v.16 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • The current study investigates whether artificially intelligent chatbots influence Korean EFL students' vocabulary learning. For eight weeks, 47 college students in Korea participated in this study. They were divided into two groups: one experimental group and one control group. Participants in the experimental group engaged in chat with a chatbot during the eight-week experimental period. Before and after the experiment, pre- and post-tests were administered to see if their English vocabulary improved. Pre- and post- surveys were also performed to understand how the participants perceived chatbot-assisted vocabulary learning. Results show that the experimental group improved their vocabulary skills as a result of engaging in chat with the chatbot. Also, their perceptions of vocabulary learning positively changed, increasing their motivation, interest, and confidence in English. Given that there have been few empirical studies to investigate the effects of chatbots on vocabulary development, the present study can provide insights on the effectiveness of chatbots.

The Study of making Visual Media for Public Relations by the Extraction of Emotional vocabulary from City Images (지역이미지 감성어휘 추출을 통한 효과적인 지방자치단체 홍보영상제작에 관한 연구)

  • Won, Kang-Sik;Cho, Dong-Min
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.475-482
    • /
    • 2012
  • In recent years, visual media for Public Relations has become an important means to improve or change city images. The purpose of this study is to examine the relations between city images and images in visual media for PR. The results of this study would be provided as the fundamental data for making city's promotional video effectively.

The Effects of Priming Emotion among College Students at the Processes of Words Negativity Information (유발된 정서가 대학생의 부정적 어휘정보 처리에 미치는 효과)

  • Kim, Choong-Myung
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.10
    • /
    • pp.318-324
    • /
    • 2020
  • The present study was conducted to investigate the influences of emotion priming and the number of negation words on the task of sentential predicate reasoning in groups with or without anxiety symptoms. 3 types of primed emotions and 2 types of stimulus and 3 conditions of negation words were used as a within-subject variable. The subjects were instructed to make facial expressions that match the directions, and were asked to choose the correct answer from the given examples. Mixed repeated measured ANOVA analyses on reaction time first showed main effects for the variables of emotion, stimulus, number of negation words and anxiety level, and the interaction effects for the negation words x anxiety combination. These results are presumably suggested to reflect that externally intervening emotion works on language comprehension in a way that anxiety could delay task processing speed regardless of the emotion and stimulus type, meanwhile the number of negation words can slower language processing only in a anxiety group. Implications and limitations were discussed for the future work.