• Title/Summary/Keyword: 급경사지

Search Result 155, Processing Time 0.03 seconds

Construction and Utilization Plan of Steep Slope and Underground Spatial Information DB for Steep Slope Disaster Prevention (급경사지방재를 위한 급경사지정보 및 지하공간정보 DB 구축과 활용 방안 연구)

  • Lee, Kyungchul;Jang, Yonggu;Song, Jihye;Kang, Injoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.7
    • /
    • pp.13-21
    • /
    • 2014
  • Recently, a great number of natural disasters have more frequently happened than the past. The National Emergency Management Agency of Korea has made preparation for the integrated management system of steep slope lands. There is information based on the steep slope inspection sheets and the underground spatial information related to the prevention against steep slope disasters. Nevertheless, building a complete DB System to prevent the hazards and secure the safeties should be urgently dealt with. It is mainly because the information of the National Disaster Management System is restricted to the text-based brief data. Therefore, the purpose of this study is to suggest the method as to building steep slope DB system for disaster prevention and maximizing the availabilities. This study shows the way of building a web-based DB system having its root in the steep slope inspection sheets. The method of establishing the ideal DB system that has liaisons between the Ministry of Land, Infrastructure and Transport and the National Emergency Management Agency is discussed in this study. Furthermore the optimization of DB utilization will assist the various integrated steep slope management systems based on U-IT which are ongoing projects.

A Study on the Improvement of the Resident' Evacuation Management Standard In Rapid Slope Areas Reflecting Rainfall Characteristics (강우특성을 반영한 급경사지 주민대피관리 기준 개선에 관한 연구)

  • Park, Ki Bum;Kim, Kyo Sik;Yang, Jun Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.257-257
    • /
    • 2021
  • 2007년 급경사지 재해 예방에 관한 법률 제정 이후, 급경사지에 대한 여러 가지 대책과 연구가 진행되고 있으나 2020년 발생한 최장기간의 장마에 안전한 것으로 판단되는 A-C등급의 급경사지 붕괴에 의해 많은 피해가 발생하였다. 특히 2020년에는 A-C등급의 급경사지 붕괴건수가 185건이나 발생하여 급경사지 평가기준에 대한 개선의 요구가 증가하고 있다. 본 연구에서는 현행 급경사지 주변 지역의 주민대피 관리기준의 강우특성이 과거 2009년에서 2014년 피해자료를 기반으로 산정된 강우기준이 적용되고 있다. 그러나 최근 기후변화에 따른 초과 강수량과 분석강우의 신뢰성을 확보할 필요가 있다. 따라서 본 연구에서는 최근 발생된 강우특성이 반영되지 못한 현행 급경사지 주민대피 관리기준의 강우기준에 대한 개선을 위해 강우자료의 30년 이상의 강우분석을 반영하고 최근의 기후변화 특성에 따른 강우분석자료를 검토하여 주민대피 관리기준에서의 강우기준 개선에 대한 연구를 하였다.

  • PDF

Establishment of Rainfall standards for Evacuation of Residents in the downstream of steep slopes (급경사지 하류지역 주민대피를 위한 강우기준의 설정)

  • Seo, Chang Woo;Park, Ki Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.280-280
    • /
    • 2022
  • 급경사지의 붕괴원인은 강수량과 지형적, 지질적 원인 등이 있지만 최근 집중호우 및 홍수사상에서 많은 피해가 발생한 것에서 강수량과 급경사지 붕괴는 밀접한 상관관계를 가지고 있다. 급경사지 붕괴에 대한 많은 선행연구가 진행되었지만 특히, 강우량과의 상관성을 해석하고 기준을 지질과 지형적 특성에 대한 규명을 하고자 노력하였다. 2015년 행정안전부에서는 급경사지 지역의 주민피해를 최소화하기 위하여 주민대피 관리기준을 제시하였다. 주민대피 관리기준에는 계측기준과 강우량 기준으로 나누어 급경사지 하류지역의 주민대피를 위험단계별로 제시하였다. 그러나 최근의 강우가 급격하게 변화하고 급경사지 지역의 많은 피해가 발생하면서 주민대피 관리기준 중 강우기준의 조정에 대한 필요성이 제기되었다. 본 연구에서는 1999년부터 2020년 까지 발생한 급경사지 피해사례를 조사하여 산사태 피해지역의 강우량 자료를 수집하여 지속시간별 강우량과 1,2,3 시간에 대한 연속강우자료를 수집하여 위험단계별 주민대피 강우량을 제시하였다. 기존 2015년도 주민대피 강우기준을 산정시 분석에 적용된 지질별 강우를 고려하여 재산정하여 위험단계별 주민대피 강우기준을 산정하였다.

  • PDF

A Study on the Causes of Steep Slope Failure induced Heavy Rainfall (집중호우시 급경사지 붕괴발생 원인분석 연구)

  • Ryu, Ji Hyeob;Lim, Ik Hyen;Hwang, Eui Jin
    • Journal of Korean Society of societal Security
    • /
    • v.4 no.1
    • /
    • pp.67-74
    • /
    • 2011
  • This paper was to examine the causes of steep slope failure during the season of heavy rainfall. For the purpose, the paper carefully analyzed the sites of steep slope failure, which happened in July 2009. The direct cause of steep slope failure was much related to heavy rainfall during summer. The paper continued to verify that additional causes include the malfunction of diverse waterways, the slope design without considering weathering soils and related characteristics, the lack of the waterway size, the intrusion of plant roots, the reinforced technique without considering slope conditions, etc.

  • PDF

Development of a Mobile System for Investigating and Maintaining Steep Slopes (급경사지 유지관리 및 피해조사를 위한 Mobile System 개발)

  • Song, Young-Karb;Kim, Tai-Hoon;Oh, Jeong-Rim;Son, Young-Jin
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.185-194
    • /
    • 2012
  • The efficient maintenance and management of steep slopes often require excessive professional resources and quantitative investigations. Therefore, it is important to develop technology for objective scientific site investigations and quantitative evaluations of steep slopes. This study proposes a 'Mobile System' for steep slopes in order to improve the effectiveness of site investigations compared with conventional methods using anevaluati on table. By analyzing site investigations and desktop studies, the required software and hardware are identified to develop the 'Mobile System', consisting of a 'Field Information Input System' and an 'Analysis System'. The applicability of the system is verified by its application to an area with steep slopes affected by debris flows. The use of this system is expected to increase the efficiency of maintaining steep slope sand to reduce the time and resources required.

Development of model for prediction of land sliding at steep slopes (급경사지 붕괴 예측을 위한 모형 개발)

  • Park, Ki-Byung;Joo, Yong-Sung;Park, Dug-Keun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.4
    • /
    • pp.691-699
    • /
    • 2011
  • Land sliding is one of well-known nature disaster. As a part of effort to reduce damage from land sliding, many researchers worked on increasing prediction ability. However, because previous studies are conducted mostly by non-statisticians, previously proposed models were hardly statistically justifiable. In this paper, we predicted the probability of land sliding using the logistic regression model. Since most explanatory variables under consideration were correlated, we proposed the final model after backward elimination process.

Definition of Data Maintenance Framework For Updating Spatial and Attributes Information of Steep Slopes and Derivation of Operation Plan (급경사지 관련 공간 및 속성정보 관리를 위한 데이터 유지관리 프레임워크 정의 및 운영방안 도출)

  • Sim, Gyoo-Seong;Moon, Chi-Gook;Kim, Jae-Young
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.431-432
    • /
    • 2022
  • 최근 국내에서는 국소지역에서 단 시간 내 발생하는 돌발강우와 게릴라성 폭우와 같은 현상으로 붕괴위험지구 및 산사태 위험지역 등의 급경사지에서 재난 및 재해가 증가하는 있는 추세이다. 이와 같은 재난 및 재해의 증가는 우리나라의 지형 및 강우특성에 따라 지역적으로 다양한 양상으로 발생하고 있다. 급경사지의 지형 및 강우특성을 고려하고 재난 및 재해 발생을 최소화하기 위한 대책수립에 활용할 수 있는 데이터 유지 및 운영관리 방안이 필요한 실정이다. 본 연구에서는 급경사지 관련 공간 및 속성정보를 합리적이고 과학적으로 관리할 수 있는 방법을 도출하기 위하여 데이터 생애주기적인 관점에서의 데이터 수집, 입력, 갱신, 수정 등의 유지관리 개념을 도입하여 연구를 수행하였고 그 결과로 급경사지 관련 유관기관에서 생산하는 공간정보와 속성정보를 정기적으로 수집하고 수정·편집하여 변환 및 전송할 수 있는 급경사지 데이터 유지관리 프레임워크 정의 및 운영 방안을 도출 하였다.

  • PDF

Development of Integrated Management System for Steep Slope Prevention and Management (급경사지 방재 및 관리를 위한 급경사지정보 통합관리시스템 개발)

  • Lee, Kyungchul;Jang, Yonggu;Song, Jihye;Kang, Injoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.77-85
    • /
    • 2014
  • Recently, the National Emergency Management Agency of Korea has been operating the National Disaster Management System. Nevertheless, there are numerous difficulties in systematic controlling the steep slope DB promptly, because the system's functions in input and control for steep slope information are merely simple. Futhermore, the hazard degrees of steep slope lands nowadays have risen suddenly in accordance with the increase rate of large scale landslides such as the landslide cases of Umyeonmountain, Chuncheon province and others or sever rain storm cases. these lead to rapid increases in frequencies of nature disasters nationally. therefore, it is needed to develop the GIS-based integrated management system for steep slope information in order to manage disasters in advance or high-degree control. This study shows the national GIS-based integrated management system to prevent the disasters that caused by steep slope lands. The integrated management system developed in this study consists of surface information input modules, realtime DB liaison modules of integrated underground information, V-world background map-based GIS, integrated management system for steep slope information user modules, realtime liaison interface modules designed for utilizing steep slope information. Also, tests about stability of data storage, system stability and consistency of processing speed were performed.

Evaluation of Steep Slopes Adjacent to Multi-use Facilities in National Parks using GIS (GIS를 활용한 국립공원 다중이용시설 인접 급경사지 평가)

  • Lee, Dong Hyeok;Jun, Kye Won;Jung, Min Jin;Park, Jun Hyo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.29-36
    • /
    • 2021
  • Recently, due to climate change, the slope is increasing, and the risk of steep slope disasters such as the occurrence of slope collapse in the east coast and Busan region in 2019 and the Gokseong landslide in 2020 is increasing. Particularly, most national parks are made up of mountainous areas, and the risk of disasters on steep slopes is increasing. As the ground of the national park is aging and the weathering and jointing of the bedrock are accelerating due to climate change, the slope collapse and rockfall are increasing, and the annual number of visitors is increasing, it is necessary to manage steep slopes adjacent to multi-use facilities with many users. In this study, dangerous steep slopes that affect multi-use facilities in national parks were analyzed using GIS and verified through field surveys. As a process for extracting steep slopes adjacent to multi-use facilities in national parks, the slope was made in DEM and slopes of 34 degrees or higher were extracted. The difference between the maximum and minimum heights of the extracted slopes was used to confirm that the slopes met the standard for steep slopes, and the analysis of the slope direction was used to confirm whether it had an effect on the multi-use facilities. After that, precision aerial images and field photos were analyzed to finally identify risks at 4 sites, and field surveys were conducted. As a result of the field survey, all 4 sites were found to be steep slopes, 3 were graded D and 1 was graded C, so it was confirmed that management was required as a risk of collapse. All steep slopes extracted through GIS were found to be dangerous, so it is judged that the extraction of steep slopes through GIS would be appropriate.

Program Construction of slope Spatial Information Acquistion in Mobile Environment (모바일 환경의 경사지 공간정보획득 프로그램 구축)

  • Kang, In-Joon;Kang, Ho-Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.3
    • /
    • pp.367-374
    • /
    • 2009
  • Every year there are great socio-economic loss and damage caused by landslides in steep slopes. According to recent statistics, the percentage of casualty due to breakdown in steep slopes was 27.3% of all natural disasters occurring over the past decade($1998{\sim}2007$). Therefore, the nationwide scale survey on the landslide susceptibility was made to recognize the status quo for appropriate troubleshooting measure against the collapse of steep slopes. Nevertheless, few dent that the data collected is not sufficient to grasp the overall understanding of the onsite situation due to lack of spatial information. As a result, the study aims to develop a program enabling to send on site topological data and prefixed data-gather criteria directly to the central management server in real-time basis. It will be conducted through mobile devices and portable GPS system, accordingly. This program is expected to be implemented as an efficient application tool of slope spatial information acquisition.