• Title/Summary/Keyword: 금-은 광화작용

Search Result 56, Processing Time 0.02 seconds

Element Dispersion and Wall-rock Alteration from Daebong Gold-silver Deposit, Republic of Korea (대봉 금-은광상의 모암변질과 원소분산 특성 연구)

  • Yoo, Bong-Chul;Chi, Se-Jung;Lee, Gil-Jae;Lee, Jong-Kil;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.713-726
    • /
    • 2007
  • The Daebong deposit consists of gold-silver-bearing mesothermal massive quartz veins which fill fractures along fault zones($N10{\sim}20^{\circ}W,\;40{\sim}60^{\circ}SW$) within banded gneiss or granitic gneiss of Precambrian Gyeonggi massif. Ore mineralization of the deposit is composed of massive white quartz vein(stage I) which was formed in the same stage by multiple episodes of fracturing and healing and transparent quartz vein(stage II) which is separated by a major faulting event. The hydrothermal alteration of stage I is sericitization, chloritization, carbonitization, pyritization, silicification and argillization. Sericitic zone occurs near and at quartz vein and includes mainly sericite, quartz, and minor illite, carbonates and epidote. Chloritic zone occurs far from quartz vein and is composed of mainly chlorite, quartz and minor sericite, carbonates and epidote. Fe/(Fe+Mg) ratios of sericite and chlorite range 0.36 to 0.59($0.51{\pm}0.10$) and 0.66 to 0.73($0.70{\pm}0.02$), and belong to muscovite-petzite series and brunsvigite, respectively. Calculated $Al_{IV}-Fe/(Fe+Mg)$ diagrams of sericite and chlorite suggest that this can be a reliable indicator of alteration temperature in Au-Ag deposits. Calculated activities of chlorite end member are $a3(Fe_5Al_2Si_3O_{10}(OH){_6}=0.00964{\sim}0.0291,\;a2(Mg_5Al_2Si_3O_{10}(OH){_6}= 9.99E-07{\sim}1.87E-05,\;a1(Mg_6Si_4O_{10}(OH){_6}=5.61E-07{\sim}1.79E-05$. It suggest that chlorite from the Daebong deposit is iron-rich chlorite formed due to decreasing temperature from $T>450^{\circ}C$. Calculated $log\;{\alpha}K^+/{\alpha}H^+,\;log\;{\alpha}Na^+/{\alpha}H^+,\;log\;{\alpha}Ca^{2+}/{\alpha}^2H^+$ and pH values during wall-rock alteration are $4.6(400^{\circ}C),\;4.1(350^{\circ}C),\;4.0(400^{\circ}C),\;4.2(350^{\circ}C),\;1.8(400^{\circ}C),\;4.5(350^{\circ}C),\;5.4{\sim}6.5(400^{\circ}C)\;and\;5.1{\sim}5.5(350^{\circ}C)$, respectively. Gain elements (enrichment elements) during wallrock alteration are $K_2O,\;P_2O_5,\;Na2O$, Ba, Sr, Cr, Sc, V, Pb, Zn, Be, Ag, As, Ta and Sb. Elements(Sr, V, Pb, Zn, As, Sb) represent a potentially tools for exploration in mesothermal and epithermal gold-silver deposits.

Geochemical Variation of Hwangsan Volcanic Complex by Large Hydrothermal Alteration (대규모 열수변질작용에 따른 황산 화산암복합체의 지구화학적 변화특성)

  • Kim, Eui-Jun;Hong, Young-Kook;Chi, Se-Jung
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.95-107
    • /
    • 2011
  • The Hwangsan volcanic rocks, hosting the Moisan epithermal Au-Ag deposit arc widely distributed throughout the Seongsan district, and associated with large hydrothermal alteration. They were analyzed as the Moisan and around voleanic rocks, and most of them show dacitic to rhyolitic compositions. Hydrothermal alteration related to epithermal system causes the host rocks to show the geochemical variation due to high mobility of alkali elements. These features can be applied for quantitative estimates of alteration intensity. Alteration intensity of volcanic rocks from the Moisan ranges from subtle to intense, based on AI vs. $Na_2O$ diagram. The pattern that ($CaO+Na_2O$) content decrease with increasing $K_2O$ content results from sericitic alteration, in which hydrothermal fluids continually provide $K^+$ into country rocks but remove $Ca^{2+}$ and $Na^{2+}$ of feldspars within country rocks. The decrease of ($CaO+Na_2O$) with decreasing $K_2O$ in some samples from the Moisan may be caused by advanced argillic alteration that all alkali elements are entirely removed from country rocks by acid hydrothermal fluids. Two alteration trends, based on Al and CCPI alteration indices suggest both sericitic alterations of feldsaprs to illite and sericite+chlorite$^{\circ}{\ae}$pyritc alteration of high Mg and Fe activities. Trace and Rare Earth Elements patterns show the similar geochemical variation related to hydrothermal alteration. Of LIL elements, strong depletion of $Sr^{2+}$, substituting for $Ca^{2+}$ in feldspars, appears to be resulted from removal of $Ca^{2+}$, during replacement of feldspars to alumino-silicates or phyllo silicates minerals by hydrothermal fluids. Relatively low total REEs contents (Moisan: 119-182 ppm; Seongsan: 111-209 ppm) and gently negative slopes suggest that significant mobility of LREEs appear to occur during hydrothermal alteration.

Occurrence and Chemical Composition of Chlorite and White Mica from Drilling Core (No. 04-1) at Gubong Au-Ag Deposit Area, Republic of Korea (구봉 금-은 광상일대 시추코아(04-1)에서 산출되는 녹니석과 백색운모의 산상 및 화학조성)

  • Bong Chul Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.273-288
    • /
    • 2023
  • The Gubong Au-Ag deposit, which has been one of the largest deposits (Unsan, Daeyudong, Kwangyang) in Korea, consists of eight lens-shaped quartz veins (a mix of orogenic-type and intrusion-related types) that filled fractures along fault zones within Precambrian metasedimentary rock. Korea Mining Promotion Corporation found a quartz vein (referred to as the No. 6 vein with a grade of 27.9 g/t Au and a width of 0.9 m) at a depth of -728 ML by drilling (No. 90-12) conducted in 1989. Korea Mining Promotion Corporation conducted drilling (No. 04-1) in 2004 to investigate the redevelopment's possibility of the No. 6 vein. The author studied the occurrence and chemical composition of chlorite and white mica using wallrock, wallrock alteration and quartz vein samples collected from the No. 04-1 drilling core in 2004. The alteration of studied samples occurs chloritization, sericitization, silicification and pyritization. Chlorite and white mica from mineralized zone at a depth of -275 ML occur with quartz, K-feldspar, calcite, rutile and pyrite in wallrock alteration zone and quartz vein. Chlorite and white mica from ore vein (No. 6 vein) at a depth of -779 ML occur with quartz, calcite, apatite, zircon, rutile, ilmenite, pyrrhotite and pyrite in wallrock alteration zone and quartz vein. Chlorite from a depth of -779 ML has a higher content of Al and Mg elements and a lower content of Si and Fe elements than chlorite from a depth of -275 ML. Also, Chlorites from a depth of -275 ML and -779 ML have higher content of Si element than theoretical chlorite. Compositional variation in chlorite from a depth of -275 ML was mainly caused by phengitic or Tschermark substitution [Al3+,VI + Al3+,IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV], but compositional variation from a depth of -779 ML was mainly caused by octahedral Fe2+ <-> Mg2+ (Mn2+) substitution. The interlayer cation site occupancy (K+Na+Ca+Ba+Sr = 0.76~0.82 apfu, 0.72~0.91 apfu) of white mica from a depth of -275 ML and -779 ML have lower contents than theoretical dioctahedral micas, but octahedral site occupancy (Fe+Mg+Mn+Ti+Cr+V+Ni = 2.09~2.13 apfu, 2.06~2.14 apfu) have higher contents than theoretical dioctahedral micas. Compositional variation in white mica from a depth of -275 ML was caused by phengitic or Tschermark substitution [(Al3+)VI + (Al3+)IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV], illitic substitution and direct (Fe3+)VI <-> (Al3+)VI substitution. But, compositional variation in white mica from a depth of -779 ML was caused by phengitic or Tschermark substitution [(Al3+)VI + (Al3+)IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV] and direct (Fe3+)VI <-> (Al3+)VI substitution.

Identification of Advanced Argillic-altered Rocks of the Haenam Area, Using by ASTER Spectral Analysis (ASTER 분광분석을 통한 해남지역 강고령토변질 암석의 식별)

  • Lee, Hong-Jin;Kim, Eui-Jun;Moon, Dong-Hyeok
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.463-474
    • /
    • 2011
  • The Haenam epithermal mineralized zone is located in the southwestern part of South Korea, and hosts low sulfidation epithermal Au-Ag deposit (Eunsan-Moisan) and clay quarries (Okmaesan, Seongsan, and Chunsan). Epithermal deposits and accompanying hydrothermal alteration related to Cretaceous volcanism caused large zoned assemblages of hydrothermal alteration minerals. Advanced argillic-altered rocks with mineral assemblages of alunite-quartz, alunite-dickite-quartz, and dickite-kaolinite-quartz exposed on the Okmaesan, Seongsan, and Chunsan area. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), with three visible and near infrared bands, six shortwave infrared bands, and five thermal infrared bands, was used to identify advanced argillic-altered rocks within the Haenam epithermal mineralized zone. The distinct spectral features of hydrothermal minerals allow discrimination of advanced argillic-altered rocks from non-altered rocks within the study area. Because alunite, dickite, and kaolinite, consisting of advanced argillic-altered rocks within the study area are characterized by Al-O-H-bearing minerals, these acid hydrothermal minerals have a strong absorption feature at $2.20{\mu}m$. The band combination and band ratio transformation cause increasing differences of DN values between advanced argillic-altered rock and non-altered rock. The alunite and dickite-kaolinite of advanced argillic-altered rocks from the Okmaesan, Seongsan, and Chunsan have average DN values of 1.523 and 1.737, respectively. These values are much higher than those (1.211 and 1.308, respectively) of non-altered area. ASTER images can remotely provide the distribution of hydrothermal minerals on the surface. In this way good relation between ASTER spectra analysis and field data suggests that ASTER spectral analysis can be useful tool in the initial steps of mineral exploration.

Occurrence and Chemical Composition of Ti-bearing Minerals from Drilling Core (No.04-1) at Gubong Au-Ag Deposit Area, Republic of Korea (구봉 금-은 광상일대 시추코아(04-1)에서 산출되는 함 티타늄 광물들의 산상과 화학조성)

  • Bong Chul Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.3
    • /
    • pp.185-197
    • /
    • 2023
  • The Gubong Au-Ag deposit consists of eight lens-shaped quartz veins. These veins have filled fractures along fault zones within Precambrian metasedimentary rock. This has been one of the largest deposits in Korea, and is geologically a mix of orogenic-type and intrusion-related types. Korea Mining Promotion Corporation drilled into a quartz vein (referred to as the No. 6 vein) with a width of 0.9 m and a grade of 27.9 g/t Au at a depth of -728 ML by drilling (No. 90-12) in the southern site of the deposit, To further investigate the potential redevelopment of the No. 6 vein, another drilling (No. 04-1) was carried out in 2004. In 2004, samples (wallrock, wallrock alteration and quartz vein) were collected from the No. 04-1 drilling core site to study the occurrence and chemical composition of Ti-bearing minerals (ilmenite, rutile). Rutile from mineralized zone at a depth of -275 ML occur minerals including K-feldspar, biotite, quartz, calcite, chlorite, pyrite in wallrock alteration zone. Ilmenite and rutile from ore vein (No. 6 vein) at a depth of -779 ML occur minerals including white mica, chlorite, apatite, zircon, quartz, calcite, pyrrhotite, pyrite in wallrock alteration zone and quartz vein. Based on mineral assemblage, rutile was formed by hydrothermal alteration (chloritization) of Ti-rich biotite in the wallrock. Chemical composition of ilmenite has maximum values of 0.09 wt.% (HfO2), 0.39 wt.% (V2O3) and 0.54 wt.% (BaO). Comparing the chemical composition of rutile at a depth -275 ML and -779 ML, Rutile at a depth of -779 ML is higher contents (WO3, FeO and BaO) than rutile at a depth of -275 ML. The substitutions of rutile at a depth of -275 ML and -779 ML are as followed : rutile at a depth of -275 ML Ba2+ + Al3+ + Hf4+ + (Nb5+, Ta5+) ↔ 3Ti4+ + Fe2+, 2V4+ + (W5+, Ta5+, Nb5+) ↔ 2Ti4+ + Al3+ + (Fe2+, Ba2+), Al3+ + V4++ (Nb5+, Ta5+) ↔ 2Ti4+ + 2Fe2+, rutile at a depth of -779 ML 2 (Fe2+, Ba2+) + Al3+ + (W5+, Nb5+, Ta5+) ↔ 2Ti4+ + (V4+, Hf4+), Fe2+ + Al3+ + Hf 4+ + (W5+, Nb5+, Ta5+) ↔ 2Ti4+ + V4+ + Ba2+, respectively. Based on these data and chemical composition of rutiles from orogenic-type deposits, rutiles from Gubong deposit was formed in a relatively oxidizing environment than the rutile from orogenictype deposits (Unsan deposit, Kori Kollo deposit, Big Bell deposit, Meguma gold-bearing quartz vein).

Structural Constraints on Gold-Silver-Bearing Quartz Mineralization in Strike-slip Fault System, Samkwang Mine, Korea (삼광광산에서의 주향이동단층에 의한 함금-은 석영맥에 대한 구조규제)

  • Lee, Hyun Koo;Yoo, Bong-Cheal;Hong, Dong Pyo;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.579-585
    • /
    • 1995
  • The Samkwang mine is Cretaceous gold-silver-bearing deposits located in the western part of the Ogcheon belt The ore deposits have been emplaced within granite gneiss of the Precambrian age. The Au-Ag deposits are hydrothermal-vein type, characterized by arsenic-, gold- and silver-bearing sulphides, in addition to the principal ore-forming sulphides arsenopyrite, galena, sphalerite, chalcopyrite, pyrite and pyrrhotite. Their proven reserves are 355,000 MT, and grades are 8.4 g Au/t and 13.6 g Ag/t. On the basis of their structural characters, the Au-Ag-bearing quartz veins are classified into three types of ore veins; (1) The Main vein shows $N40^{\circ}-80^{\circ}E$ strike and $55^{\circ}-90^{\circ}SE$ dip, (2) the Sangban vein shows E-W strike and $30^{\circ}-40^{\circ}S$ dip, and (3) the Gukseong vein has $N25^{\circ}-40^{\circ}W$strike and $65^{\circ}-80^{\circ}SW$ dip. The emplacements of the ore veins are closely related to the minimum stress axis $({\sigma}_3)$ during the strike-slip movement of the study area. The ore-bearing veins filled with extension fractures during strike-slip movements were sequentially emplaced as follows: I) When ${\sigma}_1$ operates obliquely to NE-series discontinous surface, the Main fault zone $(F_1)$ developes. 2) During the same time, extension fractures ($T_1$ Gukseong veins) take place. 3) When the fault progress continuously, the existing $T_1$, may be high angle and $T_2$ (Daehung vein) developes continuously. 4) When ${\sigma}_1$ changes to sinistral sense, $T_3$ (basic dyke) occurs. 5) When a reverse fault becomes active, the Sangban vein is branched from the Guksabong vein.

  • PDF