• Title/Summary/Keyword: 금형시스템

Search Result 440, Processing Time 0.031 seconds

A Study on Insert Injection Molding for BLDC Motor Stator (BLDC 모터 고정자의 인서트 사출 성형에 관한 연구)

  • Choi, Du-Soon;Kim, Hong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5737-5742
    • /
    • 2015
  • Insert injection molding is a process in which molten plastic is injected into a mold that contains a pre-placed insert. During the injection stage, the insert can be deformed by the pressure applied by the polymer melts. The deformation of the insert changes the width of the flow path around the insert, which can cause several defects such as short shots or warpages of the parts. In order to reduce the deformation of the insert, it is important to achieve successful design of gating system, insert geometry, and molding conditions. In the present study, the insert deformations that occured during the injection molding of the BLDC motor stator were investigated by numerical analyses. The gate location and the insert shape were modified to reduce the insert deformation. Finally, the injection molding with the modified designs was carried out, and it was confirmed that the insert deformation was reduced.

Development of high-efficiency heating system using humidifying particles (가습 입자를 활용한 고효율 난방 시스템 개발)

  • Lee, Jeong-Won;Hong, Kyung-Bo
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.17-24
    • /
    • 2020
  • Products for heating indoors in low temperature and dry winter are largely divided into products using fossil fuels and products using electricity. The fossil fuels can warm the entire space by convection, but there is a high risk of fire and the frequent ventilation due to the increase in carbon monoxide and carbon dioxide. Heaters using electricity are mainly used because they are convenient to use and are cheap. However, these products can not efficiently warm the air because they use radiation energy. In other words, only the front part exposed to the heater is warm, and the rear part has no heating effect at all. Also, because it emits a large amount of light, fatigue of the eyes is very high. Another problem is that when using electric heaters, the room tends to be dry by high heat. Indoor humidity maintenance is a very important factor in the prevention and treatment of respiratory diseases. Especially, it is essential for health care for infants, bronchial organs and people with weak respiratory because humidity is low in winter. In this study, we conducted a study to develop a product that can improve heating efficiency while maintaining proper indoor humidity by combining heat energy and moisture particles. The concept of humidification and heating at the same time, moisture particles generated in the humidifier pass through the heater, include thermal energy, and the moisture particles with thermal energy are diffused into the space by forced convection, thereby warming the entire space. In addition, the heating time is shortened as the feeling temperature is increased with the high relative humidity, and this has the effect that the heating cost in winter is reduced.

Development of monitoring system and quantitative confirmation device technology to prevent counterfeiting and falsification of meters (주유기 유량 변조방지를 위한 주유기 엔코더 신호 펄스 파형 모니터링 및 정량확인 시스템 개발)

  • Park, Kyu-Bag;Lee, Jeong-Woo;Lim, Dong-Wook;Kim, Ji-hun;Park, Jung-Rae;Ha, Seok-Jae
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.55-61
    • /
    • 2022
  • As meters become digital and smart, energy data such as electricity, gas, heat, and water can be accurately and efficiently measured with a smart meter, providing consumers with data on energy used, so that real-time demand response and energy management services can be utilized. Although it is developing from a simple metering system to a smart metering industry to create a high value-added industry fused with ICT, illegal counterfeiting of electronic meters is causing problems in intelligent crimes such as manipulation and hacking of SW. The meter not only allows forgery of the meter data through arbitrary manipulation of the SW, but also leaves a fatal error in the metering performance, so that the OIML requires the validation of the SW from the authorized institution. In order to solve this problem, a quantitative confirmation device was developed in order to eradicate the act of cheating the fuel oil quantity through encoder pulse operation and program modulation, etc. In order to prevent the act of deceiving the lubricator, a device capable of checking pulse forgery was developed, manufactured, and verified. In addition, the performance of the device was verified by conducting an experiment on the meter being used in the actual field. It is judged that the developed quantitative confirmation device can be applied to other flow meters other than lubricators, and in this case, accurate measurement can be induced.

Estimation of viscosity of by comparing the simulated pressure profile from CAE analysis with the Long Fiber Thermoplastic(LFT) measuring cavity pressure (Long Fiber Thermoplastic(LFT) 사출성형 공정에서 캐비티 내 압력 측정 및 CAE해석을 활용한 점도 추정)

  • Lim, Seung-Hyun;Jeon, Kang-Il;Son, Young-Gon;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1982-1987
    • /
    • 2011
  • In this study, we proposed a new method that can estimate viscosity curves of unknown samples or high viscous resins like LFT(Long Fiber Thermoplastics). First, we built the system that could detect the pressure of melt during filling the cavity in a mold. It consists of both pressure sensors which are installed in a mold and the Kit which can convert analog signal to digital signal. The kit measures the melt pressure in mold cavity. We could also simulate the cavity pressure during filling process with commercialized CAE softwares(ex, Moldflow). If the viscosity data in CAE Database were correct, the simulated pressure profile coincided with the measured one. According to our proposed algorithm, we obtained correct viscosity data by iterating the process of comparing the simulated profile with the measured one until both coincided each other. In order to verify this algorithm, we selected well-defined PP resin and concluded that the experimental profile comply with the CAE profile. We could also estimate the optimized viscosity curves for PP-LFT by applying our method.

Fabrication and validation study of a 3D tumor cell culture system equipped with bloodvessle-mimik micro-channel (혈관모사 마이크로채널이 장착된 3D 종양 세포 배양 시스템의 제작 및 검증 연구)

  • Park, Jeong-Yeon;Koh, Byum-seok;Kim, Ki-Young;Lee, Dong-Mok;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.11-16
    • /
    • 2021
  • Recently, three-dimensional (3D) cell culture systems, which are superior to conventional two-dimensional (2D) vascular systems that mimic the in vivo environment, are being actively studied to reproduce drug responses and cell differentiation in organisms. Conventional two-dimensional cell culture methods (scaffold-based and non-scaffold-based) have a limited cell growth rate because the culture cannot supply the culture medium as consistently as microvessels. To solve this problem, we would like to propose a 3D culture system with an environment similar to living cells by continuously supplying the culture medium to the bottom of the 3D cell support. The 3D culture system is a structure in which microvascular structures are combined under a scaffold (agar, collagen, etc.) where cells can settle and grow. First, we have manufactured molds for the formation of four types of microvessel-mimicking chips: width / height ①100 ㎛ / 100 ㎛, ②100 ㎛ / 50 ㎛, ③ 150 ㎛ / 100 ㎛, and ④ 200 ㎛ / 100 ㎛. By injection molding, four types of microfluidic chips were made with GPPS (general purpose polystyrene), and a 100㎛-thick PDMS (polydimethylsiloxane) film was attached to the top of each microfluidic chip. As a result of observing the flow of the culture medium in the microchannel, it was confirmed that when the aspect ratio (height/width) of the microchannel is 1.5 or more, the fluid flows from the inlet to the outlet without a backflow phenomenon. In addition, the culture efficiency experiments of colorectal cancer cells (SW490) were performed in a 3D culture system in which PDMS films with different pore diameters (1/25/45 ㎛) were combined on a microfluidic chip. As a result, it was found that the cell growth rate increased up to 1.3 times and the cell death rate decreased by 71% as a result of the 3D culture system having a hole membrane with a diameter of 10 ㎛ or more compared to the conventional commercial. Based on the results of this study, it is possible to expand and build various 3D cell culture systems that can maximize cell culture efficiency by cell type by adjusting the shape of the microchannel, the size of the film hole, and the flow rate of the inlet.

A Study on Animation Character Face Design System Based on Physiognomic Judgment of Character Study in the Cosmic Dual Forces and the Five Elements Thoughts (음양오행(陰陽五行)사상의 관상학에 기반한 애니메이션 캐릭터 얼굴 설계 시스템 연구)

  • Hong, Soo-Hyeon;Kim, Jae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.7
    • /
    • pp.872-893
    • /
    • 2006
  • In this study, I classify the elements of physiognomic judgment of character with regard to form and meaning from a visual perspective based on physiognomic judgment of character study in 'the cosmic dual forces and the Five Elements theory'. Individual characters for each type are designed using graphic data. Based on that, design system of individual characters for each personality type is investigated using Neural Network system. Faces with O-Haeng (Five Elements) shapes are shown to constitute the system with ${\pm}0.3%$ degree of error tolerance for the non-loaming input data. For the shapes of Chinese characters 'tree, fire, soil, gold and water', their MSE(Mean Square Error) are 0.3, 0.3, 0.2, 0.5, 0.2. It seems to be the best regarding the scoring system which ranges from 0 to 5. Therefore, this system might be regarded to produce the most accurate facial shape of character automatically when we input character's personality we desire to make.

  • PDF

Burr Expert System을 이용하여 Exit Burr의 최소화를 고려한 최적 가공 계획 알고리즘의 개발

  • Kim Ji-Hwan;Kim Young-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.189-193
    • /
    • 2003
  • 금형가공에 있어서 밀링머신의 가공에서는 절삭가공의 잔유물인 버(Burr)가 생성되고, 이러한 버는 가공의 정밀도를 감소시킬 뿐만 아니라 후처리과정(Deburring)을 야기시킴으로 인해서 작업효율의 감소 및 생산성의 비효율적 낭비를 가져오게 된다. 따라서, 정밀도와 작업효율을 극대화하긴 위해서는 버의 생성원리를 파악하고, Exit Burr의 생성부분을 미리 예측하여 버의 생성을 최소화 할 수 잇는 작업 가공계획을 설계하여야 한다. (1)기존의 Burr Exit System에서는 피삭재의 단면형상인 Line과 Are처럼 단순한 형상뿐만 아니라, Line과 Are가 연결되어있는 복잡란 형상에 대해서도 버를 판별한다. 그리고, 가공 후 버가 생성되는 부분을 예측하고, 이때의 Exit Angle을 계산하여 이에 해당하는 기 실험결과 DataBase와 연동하여 생설될 버의 형상과 크기 등의 결과를 제공하여 준다. 더불어, 피삭재의 단면형상이 여러 가지 복합적인 형상으로 이루어져 있는 경우와 다양한 공구 경로까지 고려하여 실제가공과 거의 유사란 상황을 적용할 수 잇는 알고리즘으로 개발하였다. 본 논문에서는 이제까지 개발된 다양한 형상에 대한 Exit Burr 판별 알고리즘을 이용하여 임의형상을 가진 피삭재의 다중가공경로 상에서 발생 가능한 버를 예측하고, 버의 길이나 가공시간 들을 정?화 하여 최적화하는데 필요란 요소를 추출해 보고자 한다. 또한, 이를 인용하여 Face Windows에서의 버의 발생을 최소화 할 수 있는 최적 절삭가공 공구경로를 제시하여, 작업 효율성을 극대화하는 알고리즘을 Windows 응용 프로그램으로 구현하고자 한다.생성하기보다는 기존에 발생된 구매 지시의 우선적 사용과 기존 구매 지시의 납기 일자를 고객 납기에 가장 잘 맞출 수 있도록 변경하는 방안을 제시한다. 이렇게 함으로써 최대한 고객 납기를 만족하도록 계획을 수립할 수 있게 된다. 본 논문에서 제시하는 계획 모델을 사용함으로써 고객 주문에 대한 대응력을 높일 수 있고, 계획의 투명성으로 인한 전체 공급망의Bullwhip effect를 감소시킬 수 있는 장점이 있다. 동시에 이것은 향후 e-Business 시스템 구축을 위한 기본 인프라 역할을 수행할 수 있게 된다. 많았고 년도에 따른 변화는 보이지 않았다. 스키손상의 발생빈도는 초기에 비하여 점차 감소하는 경향을 보였으며, 손상의 특성도 부위별, 연령별로 다양한 변화를 나타내었다.해가능성을 가진 균이 상당수 검출되므로 원료의 수송, 김치의 제조 및 유통과정에서 병원균에 대한 오염방지에 유의하여야 할 것이다. 확인할 수 있었다. 이상의 결과에 의하면 고농도의 유기물이 함유된 음식물쓰레기는 Hybrid Anaerobic Reactor (HAR)를 이용하여 HRT 30일 정도에서 충분히 직접 혐기성처리가 가능하며, 이때 발생된 $CH_{4}$를 회수하여 이용하면 대체에너지원으로 활용 가치가 높은 것으로 판단된다./207), $99.2\%$(238/240), $98.5\%$(133/135) 및 $100\%$ (313)였다. 각각 두 개의 요골동맥과 우내흉동맥에서 부분협착이나 경쟁혈류가 관찰되었다. 결론: 동맥 도관만을 이용한 Off pump CABG를 시행하여 감염의 위험성을

  • PDF

Mechanical Bending Process and Application for a Large Curved Shell Plate by Multiple Point Press Machine (무금형 다점 펀치를 사용한 선체외판의 분할 성형 가공 정보 계산 시스템 개발)

  • Hwang, Se-Yun;Lee, Jang-Hyun;Ryu, Cheol-Ho;Han, Myung-Soo;Kim, Kwang-Ho;Kim, Kwang-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.528-538
    • /
    • 2011
  • As a forming method for curved hull plates more efficient than the flame bending, mechanical bending using multi point press forming and die-less forming is discussed in this paper. the mechanical forming is a flexible manufacturing system for automatically forming of hull parts. It is especially suited to varied curved parts. This paper discusses a multiple point pressing machine composed of a pair of reconfigurable punches in order to achieve the rapid forming of curved hull plates using division forming and presents how forming information is obtained from the given design surface. Although the mechanical forming can be efficient in the metal forming, spring back after pressing is a phenomenon which must be carefully considered when quantifying the process variables. If the spring back is not accurately controlled, the fabricated shell plate cannot meet assembly tolerance. This paper describes the principles to calculate the proper stroke of each punch at the divided areas. the strokes are determined by an iterative process of sequential pressing and spring back compensation from an unfolded flat shape to its given design surface. FEA(finite element analysis) is used to simulate the spring back of the plate and the IDA(iterative displacement adjustment) method adjusts the offset of pressing punches from the deformation results and the design surface. The shape deviations of two surfaces due to spring back are compensated by integrated system using FEA and IDA method. For the practical application, It is aimed to develop an integrated system that can automatically perform the compensation process and calculate strokes of punches of the double sides' reconfigurable multiple-press machine and some experimental results obtained with mechanical bending are presented.

A Study on the Development of Transfer Papers -Focused on Tile Design for Remodeling- (전사지 개발에 대한 연구 -리모델링을 위한 타일디자인을 중심으로-)

  • 모인순
    • Archives of design research
    • /
    • v.15 no.2
    • /
    • pp.213-222
    • /
    • 2002
  • A transfer paper, is needed in the third firing, is usually utilized for industrial ceramics in order to produce tablewares or promoting products. Products may have the same form, however; the price might be different by what kinds of design have transferred. We need to fully understand these methods in order to create high value and quality. Remodeling, the so-called second architecture, results from social Needs for renovation of structures and changing functions. Tile satisfying the need for a custom-made design which fits the features of a space. Most importantly, the remodeler must make an individual design ordered for the customer with an emphasis on economy and time efficiency. Tiles currently in the market are mass-produced using an automated system with a high-priced mold. It is difficult to find tiles of distinct design that are made in a small quantity. We need to develop a method for making various kinds of tile designs that would be marketed for the remodeling industry. In this study, after designing a certain wall with the tiffs in the space, 1 will talk about developing a method to make transfer paper to produce individual tiles for the space. 1 hope that the functional and aesthetic effect on remodeling will gain in popularity, and that we will foster a new demand for tiles in harmony with the other materials mentioned in this study.

  • PDF

IoT-Based Device Utilization Technology for Big Data Collection in Foundry (주물공장의 빅데이터 수집을 위한 IoT 기반 디바이스 활용 기술)

  • Kim, Moon-Jo;Kim, DongEung
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.550-557
    • /
    • 2021
  • With the advent of the fourth industrial revolution, the interest in the internet of things (IoT) in manufacturing is growing, even at foundries. There are several types of process data that can be automatically collected at a foundry, but considerable amounts of process data are still managed based on handwriting for reasons such as the limited functions of outdated production facilities and process design based on operator know-how. In particular, despite recognizing the importance of converting process data into big data, many companies have difficulty adopting these steps willingly due to the burden of system construction costs. In this study, the field applicability of IoT-based devices was examined by manufacturing devices and applying them directly to the site of a centrifugal foundry. For the centrifugal casting process, the temperature and humidity of the working site, the molten metal temperature, and mold rotation speed were selected as process parameters to be collected. The sensors were selected in consideration of the detailed product specifications and cost required for each process parameter, and the circuit was configured using a NodeMCU board capable of wireless communication for IoT-based devices. After designing the circuit, PCB boards were prepared for each parameter, and each device was installed on site considering the working environment. After the on-site installation process, it was confirmed that the level of satisfaction with the safety of the workers and the efficiency of process management increased. Also, it is expected that it will be possible to link process data and quality data in the future, if process parameters are continuously collected. The IoT-based device designed in this study has adequate reliability at a low cast, meaning that the application of this technique can be considered as a cornerstone of data collecting at foundries.