• Title/Summary/Keyword: 금형강도

Search Result 108, Processing Time 0.036 seconds

A Study on the Applicability of CNT/Aluminum Nanocomposites to Automotive Parts (CNT강화 알루미늄 나노복합재의 자동차용 부품 적용성 연구)

  • Min, Byung Ho;Nam, Dong Hoon;Park, Hoon Mo;Lee, Kyung Moon;Lee, Jong Kook
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.226-231
    • /
    • 2015
  • Various characteristics(thermal expansion, microstructure, etc.) and mechanical properties of CNT-aluminum nano composites manufactured by volume production system were evaluated. Also, formability and durability were evaluated for potential applications in automotive parts, via compared with high-elasticity material (A390) and the current commercial product. As a result, this composite has excellent mechanical properties and formability, therefore, to verity its potential for application as light and high strength materials in automobile part.

A study on the Bending Fatigue Strength of Die Steels coated with VC(Vanadium Carbide)by Immersing in Molten Borax Bath (용융염 침적법에 의한 VC coating 금형강의 굽힘 피로강도에 관한 연구)

  • Lee, B.K.;Nam, T.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.3
    • /
    • pp.166-177
    • /
    • 1993
  • Bending fatigue strength tests were made for VC coated die steels which were coated by immersing in a molten borax bath and for hardened die steels which were quenched and tempered, in order to clarify the effect of VC coating at $1000^{\circ}C$ and $1025^{\circ}C$. The material used in this investigation was a representative cold and hot die steels STD11, STD61. The results obtained are as follows. 1) The endurance limit of VC coated die steels was a little lower than that of hardened die steels. It is considered to be mainly due to the decfl.lase of hardness in the substrates. Accordingly, the endurance limit reo covered almost to the level of hardened die steels by an additional diffusion treatment. 2) The initiation point of fatigue fracture of VC coated die steels in reversed bening was on the substrate just under the VC layer. Hence, the endurance limit is corrected to the hardness of this part. 3) But, there is a considerable scatter in this relationship and the endurance limit of VC coated die steels was a little lower than that of hardened die steels with equal hardness. These results suggest that the fatigue strength of VC coated die steels is determined not only by the hardness but also by other factors. For example. the residual stress in the substrate just under VC coating layer is one of the factors besides hardness which is mainly related to the retained austenite(${\gamma}_R$).

  • PDF

Design and Implementation of the Front part of an Agricultural Electric Vehicle based on Vacuum Forming using Computational Structural Analysis

  • Lee, Hun-Kee;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.45-51
    • /
    • 2021
  • In this paper, we propose a 3D design method of the vacuum forming method of the front part to improve the lightness and production efficiency of agricultural electric vehicles. For agricultural electric vehicles, lightness and production efficiency are more important than the strength of materials for collision protection. In this paper, we propose a vacuum forming design method that can replace complex machining processes such as laser machining, bending, and painting. The main purpose of this research is to improve product stability, productivity and convenience through 3D design of the front part and development of vacuum forming mold technology. Research procedure follows the 3D modeling of the front part using CATIA, finite element analysis for the structural stability using ABAQUS, manufacturing prototype for the investigation of the dimensions using 3D scanner and actual driving test under agricultural electric vehicle usage environment. The results verifies the proposed 3D design method of the vacuum forming method and are expected to be widely used by agricultural workers through the simplification of the production process of agricultural electric vehicles.

Study on Effect of the printing direction and layer thickness for micro-fluidic chip fabrication via SLA 3D printing (적층 방식 3차원 프린팅에 의한 미세유로 칩 제작 공정에서 프린팅 방향 및 적층 두께의 영향에 관한 연구)

  • Jin, Jae-Ho;Kwon, Da-in;Oh, Jae-Hwan;Kang, Do-Hyun;Kim, Kwanoh;Yoon, Jae-Sung;Yoo, Yeong-Eun
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.58-65
    • /
    • 2022
  • Micro-fluidic chip has been fabricated by lithography process on silicon or glass wafer, casting using PDMS, injection molding of thermoplastics or 3D printing, etc. Among these processes, 3D printing can fabricate micro-fluidic chip directly from the design without master or template for fluidic channel fabricated previously. Due to this direct printing, 3D printing provides very fast and economical method for prototyping micro-fluidic chip comparing to conventional fabrication process such as lithography, PDMS casting or injection molding. Although 3D printing is now used more extensively due to this fast and cheap process done automatically by single printing machine, there are some issues on accuracy or surface characteristics, etc. The accuracy of the shape and size of the micro-channel is limited by the resolution of the printing and printing direction or layering direction in case of SLM type of 3D printing using UV curable resin. In this study, the printing direction and thickness of each printing layer are investigated to see the effect on the size, shape and surface of the micro-channel. A set of micro-channels with different size was designed and arrayed orthogonal. Micro-fluidic chips are 3D printed in different directions to the micro-channel, orthogonal, parallel, or skewed. The shape of the cross-section of the micro-channel and the surface of the micro-channel are photographed using optical microscopy. From a series of experiments, an optimal printing direction and process conditions are investigated for 3D printing of micro-fluidic chip.

Study on the Strength Characteristics of PP and ABS According to the Ratio of Recycled Resin (재사용 수지 비율에 따른 PP, ABS의 강도 특성에 관한 연구)

  • Jun-Han Lee;Jong-Sun Kim
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.57-63
    • /
    • 2024
  • In this study, the recyclability of commonly used PP (polypropylene) and ABS (acrylonitrile butadiene styrene) was evaluated by molding test specimens from mixture of virgin and shredded material, followed by measuring their strength properties, Experiments were conducted o two type of PP (transparent and non-transparent) and two types of ABS (white and yellow). Test specimens for each resin were prepared with shredded material ratios ranging from 10% to 50% in 10% increments. Changes in tensile strength, elastic modulus, and elastic limit were analyzed based on the mixing ratio of the shredded material. The experimental results demonstrated that the strength properties of all the resins remained consistent within a certain range, even with increasing proportions of shredded material. For transparent PP, the tensile strength ranged from 30.87± MPa, the elastic modulus from 1.23±0.04 GPa, and the elastic limit from 19.17±0.44%. Non-transparent PP exhibited a tensile strength ranging from 27.71±0.58 MPa, an elastic modulus from 1.03±0.06 GPa, and an elastic limit from 17.35±0.41%. For ABS, white ABS had a tensile strength of 39.42±0.28 MPa, an elastic modulus of 1.94±0.01 GPa, and an elastic limit of 36.76±0.25%. Yellow ABS showed a tensile strength of 39.25±0.78 MPa, an elastic modulus of 1.94±0.01 GPa, and an elastic limit of 37.14±0.23%, with values remaining consistent within this range. Based on these results, it was confirmed that the mechanical properties of the resins used in this study do not change significantly when mixed with recycled shredded material, indicating excellent mechanical recyclability.

A Study on the Performance Improvement of ta-C Thin Films Coating on Tungsten Carbide(WC) Surface for Aspherical Glass Lens by FCVA Method Compared with Ir-Re coating (Ir-RE 코팅 대비 자장여과필터방식을 이용한 비구면 유리 렌즈용 초경합금(WC)표면의 ta-C 박막 코팅 성능 개선 연구)

  • Jung, Kyung-Seo;Kim, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.27-36
    • /
    • 2019
  • The demand for a low dispersion lens with a small refractive index and a high refractive index is increasing, and accordingly, there is an increasing need for a releasable protective film with high heat resistance and abrasion resistance. On the other hand, the optical industry has not yet established a clear standard for the manufacturing process and quality standards for mold-releasing protective films used in aspheric glass lens molding. Optical lens manufacturers treat this technology as proprietary information. In this study, an experiment was conducted regarding the optimization of ion etching, magnetron, and arc current at each source and filter part, and bias voltage in FCVA (filtered cathode vacuum arc)-based Ta-C thin film coatings. This study found that compared to iridium-rhenium alloy thin film sputtering products, the coating conditions were improved by approximately 50%, 20%, and 40% in terms of thickness, hardness, and adhesive strength of the film, respectively. The thin-film coating process proposed in this study is expected to contribute significantly to the development and utilization of glass lenses, which will help enhance the minimum mechanical properties and quality of the mold-release thin film layer required for glass mold surface forming technology.

A Study on the Compression Moldablity for Continuous Fiber-Reinforced Polymeric Composites ―Part 1 : The Mechanical Propertis and the Cup-type Compression Moldability for Numbers of Needling― (연속섬유강화 플라스틱 복합재료의 압축성형에 관한 연구 -제I보 : 니들펀칭횟수에 따른 물성치 및 컵형 압축성형성-)

  • 오영준;김형철;김이곤
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.31-39
    • /
    • 1999
  • Glass-fiber reinforced polymeric composites provide the desitable properties of high stiffness and strength as well as specific weight. Hence, they have become some of the most important materials in several industries. These composites can be grouped into thermoplastic and thermoset composites, with thermoplastic composites having several advantages over thermoset composites in mechanical properties and processing. As a result, the study of the material behavior and forming techniques of such composites has attracted considerable attention in recent years. When the continuous fiber-reinforced polymeric composites are molded by flow molding, the molded parts leads to be nonhomogeneity and anisotropic because of the separation and orientation of fibers. As the characteristics of the products are greatly dependent on the separation, it is very important to clarify the separation in relarion to molding conditions, fiber mat structures and mold geometry. In this study, the effects of the mold geometry and the fiber mat structure on the compression moldability are studied using the cup-type molding.

  • PDF

Thermal and Mechanical Properties of Epoxy Composition Containing Modified Halosite Nanotubes with Silane Coupling Agent (실란 커플링제를 이용하여 개질한 할로이사이트 나노튜브가 함유된 에폭시 조성물의 열적·기계적 물성)

  • Kim, TaeHee;Lim, Choong-Sun;Kim, Jin Chul;Seo, Bongkuk
    • Journal of Adhesion and Interface
    • /
    • v.18 no.2
    • /
    • pp.68-74
    • /
    • 2017
  • Epoxy resins are widely used in various fields due to their excellent thermal, mechanical and chemical properties. In order to improve the mechanical properties of the epoxy composition after curing, various materials are mixed in the epoxy resin. Among the nano materials, CNT is the most widely used. However, CNT has limitations in terms of manufacturing process and manufacturing cost. Therefore, there is a growing interest in naturally occurring HNTs having similar structure to that of CNT. In this study, the thermal and mechanical properties of epoxy compositions containing HNTs treated with two types of silane compounds were investigated. The mechanical properties of silane-treated HNT were measured by using a universal testing machine. The differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), and thermomechanical analysis (TMA) were used to measure thermal properties. As a result of the above tests, when the HNT was surface-treated with aminosilane, the tensile strength of the epoxy composition containing the HNT was higher than that of the epoxy composition containing epoxy silane treated HNT. The linear thermal expansion coefficients (CTE) obtained from the thermomechanical analysis of the two epoxy compositions for the comparison of dimensional stability showed that the HNT composition treated with aminosilane showed a lower value of CTE than that of epoxy composition including the pristine HNT.