• 제목/요약/키워드: 금융 감성 분석

검색결과 16건 처리시간 0.025초

데이터 세트별 Post-Training을 통한 언어 모델 최적화 연구: 금융 감성 분석을 중심으로 (Optimizing Language Models through Dataset-Specific Post-Training: A Focus on Financial Sentiment Analysis)

  • 정희도;김재헌;장백철
    • 인터넷정보학회논문지
    • /
    • 제25권1호
    • /
    • pp.57-67
    • /
    • 2024
  • 본 연구는 금융 분야에서 중요한 증감 정보를 효과적으로 이해하고 감성을 정확하게 분류하기 위한 언어 모델의 학습 방법론을 탐구한다. 연구의 핵심 목표는 언어 모델이 금융과 관련된 증감 표현을 잘 이해할 수 있게 하기 위한 적절한 데이터 세트를 찾는 것이다. 이를 위해, Wall Street Journal에서 수집한 금융 뉴스 문장 중 증감 관련 단어를 포함하는 문장을 선별했고, 이와 함께 적절한 프롬프트를 사용해 GPT-3.5-turbo-1106으로 생성한 문장을 각각 post-training에 사용했다. Post-training에 사용한 데이터 세트가 언어 모델의 학습에 어떠한 영향을 미치는지 금융 감성 분석 벤치마크 데이터 세트인 Financial PhraseBank를 통해 성능을 비교하며 분석했으며, 그 결과 금융 분야에 특화된 언어 모델인 FinBERT를 추가 학습한 결과가 일반적인 도메인에서 사전 학습된 모델인 BERT를 추가 학습한 것보다 더 높은 성능을 보였다. 또 금융 뉴스로 post-training을 진행한 것이 생성한 문장을 post-training을 진행한 것에 비해 전반적으로 성능이 높음을 보였으나, 일반화가 더욱 요구되는 환경에서는 생성된 문장으로 추가 학습한 모델이 더 높은 성능을 보였다. 이러한 결과는 개선하고자 하는 부분의 도메인이 사용하고자 하는 언어 모델과의 도메인과 일치해야 한다는 것과 적절한 데이터 세트의 선택이 언어 모델의 이해도 및 예측 성능 향상에 중요함을 시사한다. 연구 결과는 특히 금융 분야에서 감성 분석과 관련된 과제를 수행할 때 언어 모델의 성능을 최적화하기 위한 방법론을 제시하며, 향후 금융 분야에서의 더욱 정교한 언어 이해 및 감성분석을 위한 연구 방향을 제시한다. 이러한 연구는 금융 분야 뿐만 아니라 다른 도메인에서의 언어 모델 학습에도 의미 있는 통찰을 제공할 수 있다.

감성 분석을 위한 FinBERT 미세 조정: 데이터 세트와 하이퍼파라미터의 효과성 탐구 (FinBERT Fine-Tuning for Sentiment Analysis: Exploring the Effectiveness of Datasets and Hyperparameters)

  • 김재헌;정희도;장백철
    • 인터넷정보학회논문지
    • /
    • 제24권4호
    • /
    • pp.127-135
    • /
    • 2023
  • 본 논문에서는 금융 뉴스 데이터로 추가적인 사전 학습이 진행된 BERT 기반 모델인 FinBERT 모델을 사용하여 금융 영역에서 감성 분석 시 학습시킬 데이터와 그에 맞는 하이퍼파라미터를 찾는 방법을 소개한다. 우리의 목표는 다양한 데이터 세트를 활용하고 하이퍼파라미터를 미세 조정하여 정확한 감성 분석을 위해 FinBERT 모델을 가장 잘 활용하는 방법에 대한 포괄적인 가이드를 제공하는 것이다. 이 연구에서는 제안된 FinBERT 모델 미세 조정 접근법의 아키텍처와 워크플로우를 개괄적으로 설명하고, 감성 분석 태스크를 위한 다양한 데이터 세트와 하이퍼파라미터의 성능을 강조한다. 또한, 감성 라벨링 작업에 GPT-3를 사용함으로써 GPT-3가 적절한 라벨러 역할을 하는지에 대한 신뢰성을 검증한다. 결과적으로 미세 조정된 FinBERT 모델이 다양한 데이터 세트에서 우수한 성능을 발휘 한다는 것을 보여주었고, 각 데이터 세트에 대해 전반적으로 우수한 성능을 보이는 학습률 5e-5와 배치 크기 64의 최적의 조합을 찾았다. 또 일반 도메인의 뉴스보다 일반 도메인의 트위터 데이터 세트에서 성능이 크게 향상됨을 기반으로 금융 뉴스 데이터만으로만 추가적으로 학습시키는 FinBERT 모델에 대한 의구심을 제시한다. 이를 통해 FinBERT 모델에 대한 최적의 접근 방식을 결정하는 복잡한 프로세스를 간소화하고 금융 분야 감성 분석 모델을 위한 추가적인 학습 데이터 세트와 미세 조정 시 하이퍼파라미터 선정에 대한 가이드라인을 제시한다.

텍스트마이닝을 활용한 핀테크 및 디지털 금융 서비스 트렌드 분석 (Trend Analysis of FinTech and Digital Financial Services using Text Mining)

  • 김도희;김민정
    • 디지털융복합연구
    • /
    • 제20권3호
    • /
    • pp.131-143
    • /
    • 2022
  • 본 연구는 핀테크를 중심으로 국내 디지털 금융 서비스 시장의 트렌드를 파악하고자 신문기사와 트위터 데이터를 대상으로 텍스트마이닝 기법을 사용하여 분석을 진행하였다. 핀테크 시장의 성장 과정에 있어서 간편결제 서비스 도입, 인터넷전문은행 출범, 데이터 3법 개정안 통과, 마이데이터 사업 신청 등 중요하게 작용을 한 4가지 시점을 기준으로 빈도분석을 수행하여 핵심 키워드 간의 차이를 살펴보았다. 또한 핀테크 선도 국가인 중국·미국과 미래 키워드를 핀테크 키워드와 결합한 빈도분석 결과를 통해 세계 시장 속에서 국내 핀테크 산업의 현 위치와 미래 시장 전망을 예측하였다. 마지막으로 트위터 트윗을 대상으로 감성분석을 진행하여 핀테크 서비스에 대한 소비자의 기대와 우려를 정량화하였다. 따라서 본 연구는 금융 생태계 변화 과정을 살펴보고, 분석 결과를 종합함으로써 정부와 기업이 향후 핀테크 시장 발전에 있어서 활용할 수 있는 전략적 방향성 및 대응 전략을 제시한 점에서 의의가 있다.

한국어 경제 도메인 텍스트 속성 기반 감성 분석을 위한 말뭉치 주석 요소 연구 (A study of Corpus Annotation for Aspect Based Sentiment Analysis of Korean financial texts)

  • 박서윤;장연지;강예지;강혜린;김한샘
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.232-237
    • /
    • 2022
  • 본 논문에서는 미세 조정(fine-tuning) 및 비지도 학습 기법을 사용하여 경제 분야 텍스트인 금융 리포트에 대해 속성 기반 감성 분석(aspect-based sentiment analysis) 데이터셋을 반자동적으로 구축할 수 있는 방법론에 대한 연구를 수행하였다. 구축 시에는 속성기반 감성분석 주석 요소 중 극성, 속성 카테고리 정보를 부착하였으며, 미세조정과 비지도 학습 기법인 BERTopic을 통해 주석 요소를 자동적으로 부착하는 한편 이를 수동으로 검수하여 데이터셋의 완성도를 높이고자 하였다. 데이터셋에 대한 실험 결과, 극성 반자동 주석의 경우 기존에 구축된 데이터셋과 비슷한 수준의 성능을 보였다. 한편 정성적 분석을 통해 자동 구축을 동일하게 수행하였더라도 기술의 원리와 발달 정도에 따라 결과가 상이하게 달라짐을 관찰함으로써 경제 도메인의 ABSA 데이터셋 구축에 여전히 발전 여지가 있음을 확인할 수 있었다.

  • PDF

빅데이터 분석기법을 활용한 아파트 가격 관련 뉴스 기사의 극성 분석 (A Study on the Polarity of Apartment Price News Using Big Data Analysis Method)

  • 조상연;홍은표
    • 디지털융복합연구
    • /
    • 제17권9호
    • /
    • pp.47-54
    • /
    • 2019
  • 본 연구는 빅데이터 분석 방법인 오피니언 마이닝을 사용하여 아파트 가격 관련 뉴스 기사의 극성을 확인하는 연구로 자료는 2012년, 2018년 2년간 네이버에 게시된 인터넷 뉴스 기사를 사용하였다. 감성분석 모형을 모델링하고 주제 지향형 감성사전 구축 방법을 제안하였다. 제안한 감성분석 모형을 통해 분석한 결과, 아파트 가격이 상승하는 시기에는 사회적 이슈 선정에 있어서 언론사의 성향에 따라 차이가 있는 것을 확인하였고 정부와 동일한 성향의 언론사에서 긍정 기사가 많은 것을 확인하였다. 부동산 분야에서 사용할 수 있는 감성분석 모형을 제시하고 부동산 관련 비정형 데이터의 극성을 분석하였다는 것에 의의가 있다. 향후 다양한 분야에 접목하기 위해서는 주제별 감성사전을 구축해야 하며 다양한 비정형 데이터를 수집하고 수집 기간을 확장하는 것이 필요하다.

증권회사 브랜드에 있어 투자자의 투자성향과 기업의 컬러마케팅의 인과관계 분석 연구 (A study of the influence of investment tendency on the color marketing of securities company's brand)

  • 이상훈;김준교
    • 감성과학
    • /
    • 제11권4호
    • /
    • pp.599-612
    • /
    • 2008
  • 오늘날 금융 산업은 개방화와 자율화에 따른 외국금융브랜드의 진출 및 증가, 다양한 금융브랜드의 신설 등으로 급속도로 변화하고 있다. 이러한 변화의 추세 속에서 기업들은 점차 자사의 브랜드 차별화를 위해 다양한 마케팅 방법을 동원하고 있다. 그 중 최근의 금융 브랜드에서 사용하는 '컬러마케팅'은 중요한 브랜드 차별화 요소로 인식되고 있다. 그러나 일부 브랜드를 제외하고 기업의 경영성향을 내포한 브랜드의 컬러마케팅과 투자자의 투자성향에 근거한 컬러선호가 상이함이 있다고 보여진다. 이는 커뮤니케이션의 목적인 브랜드이미지 문제와도 관계가 있을 것이라고 생각된다. 따라서 본 연구는 기업과 고객 간의 효율적인 커뮤니케이션 방안을 제시하기 위해 현재 증권회사들의 브랜드 컬러마케팅과 개인금융 투자자의 투자성향 선호컬러의 상관관계에 대해서 확인해 보고자 하였다. 롤랑 바르트의 컬러의 기호학적 의미해석과 실제 투자자들의 투자성향별 집단의 선호컬러와는 차이가 있음이 확인해 볼 수 있었다. 즉, 공격적인 투자성향을 가진 투자자의 경우 열정적이며 적극성을 상징하는 적색이나 주황의 강렬한 컬러를 선호할 것으로 예상 하였으나 분석 결과 뜻밖에도 의외의 컬러를 선호하는 것으로 알 수 있었다. 이러한 분석들을 토대로 증권사의 경영성향과 투자자의 컬러성향과의 관계를 보다 면밀히 조사하고 체계화하는 과정의 일환으로 본 연구 결과는 향후 맞이하게 될 자본시장통합법에 따른 시장개방에서 금융브랜드와 고객과의 커뮤니케이션 수단의 기초적인 연구 자료가 될 수 있기를 기대한다.

  • PDF

금융권에 적용 가능한 금융특화언어모델 구축방안에 관한 연구 (A Study on the Construction of Financial-Specific Language Model Applicable to the Financial Institutions)

  • 배재권
    • 한국산업정보학회논문지
    • /
    • 제29권3호
    • /
    • pp.79-87
    • /
    • 2024
  • 최근 텍스트분류, 감성분석, 질의응답 등의 자연어 처리를 위해서 사전학습언어모델(Pre-trained Language Model, PLM)의 중요성은 날로 강조되고 있다. 한국어 PLM은 범용적인 도메인의 자연어 처리에서 높은 성능을 보이나 금융, 제조, 법률, 의료 등의 특화된 도메인에서는 성능이 미약하다. 본 연구는 금융도메인 뿐만 아니라 범용도메인에서도 우수한 성능을 보이는 금융특화 언어모델의 구축을 위해 언어모델의 학습과정과 미세조정 방법을 제안하는 것이 주요 목표이다. 금융도메인 특화언어모델을 구축하는 과정은 (1) 금융데이터 수집 및 전처리, (2) PLM 또는 파운데이션 모델 등 모델 아키텍처 선정, (3) 도메인 데이터 학습과 인스트럭션 튜닝, (4) 모델 검증 및 평가, (5) 모델 배포 및 활용 등으로 구성된다. 이를 통해 금융도메인의 특성을 살린 사전학습 데이터 구축방안과 효율적인 LLM 훈련방법인 적응학습과 인스트럭션 튜닝기법을 제안하였다.

금융 서비스 챗봇의 인터렉션 유형별 UX 평가 (UX Evaluation of Financial Service Chatbot Interactions)

  • 조국애;윤재영
    • 한국HCI학회논문지
    • /
    • 제14권2호
    • /
    • pp.61-69
    • /
    • 2019
  • 최근 새로운 ICT 흐름으로 부상하고 있는 챗봇은 금융분야에서 활발한 도입이 되고 있다. 챗봇은 사용자와 대화의 인터렉션을 통해서 서비스를 수행한다. 본 연구는 금융 서비스 챗봇의 인터렉션 대화유형이 사용자의 유용성, 사용성, 감성, 보안성에 미치는 효과에 대해 알아보고자 하였다. 이론적 고찰을 통해 챗봇의 구현방식에 기반한 대화방식에 따라 닫힌대화, 열린대화, 혼합대화 유형으로 나누어 연구를 진행하였다. 3 가지 유형의 금융 챗봇 프로토타입을 제작하였고, 실험자들은 계좌조회, 계좌이체, Q&A 의 금융 테스크 수행 후 설문조사를 실시하였다. 실험연구분석 결과 챗봇의 인터렉션 대화 유형은 유용성, 사용성에 영향을 미치는 것으로 나타났다. 사용자들은 닫힌대화와 혼합대화의 인터렉션이 금융 서비스를 오조작없이 쉽게 처리할 수 있게 하는 직관적인 인터페이스로써 선호한 것으로 나타났다. 본 연구는 자연스러운 대화를 통해 서비스를 제공하는 인공지능의 감성적인 요소와 금융 업무를 수행하는 기능적인 요소를 모두 고려해야 하는 금융 챗봇 사용자들의 심층적인 이해를 필요로 하는 사용자 경험 향상을 위한 자료로 활용될 수 있다.

SNS 감성분석을 이용한 정보 추출 방법론에 관한 연구 (Study on the Methodology for Extracting Information from SNS Using a Sentiment Analysis)

  • 홍두표;정하림;박상민;한음;김홍회;윤일수
    • 한국ITS학회 논문지
    • /
    • 제16권6호
    • /
    • pp.141-155
    • /
    • 2017
  • 최근 SNS 이용이 활발해짐에 따라 많은 사람들이 특정 이벤트 등에 대한 자신들의 생각을 비정형 데이터인 텍스트 형태로 자신의 SNS에 게시하고 있다. 이에 따라 금융, 유통 등 다양한 분야에서 이미 SNS를 이용하여 서비스 만족도 조사, 소비자 요구사항 모니터링, 대선 후보 선호도 등을 수행하고 있다. 하지만 교통 분야에서는 감성분석과 같은 비정형 데이터 분석을 활용하는 사례가 부족한 실정이다. 이에 본 연구에서는 한국도로공사에서 수집한 비정형 데이터인 고속도로 VOC 데이터를 이용하여 교통분야에서 사용할 수 있는 감성분석 방법론을 개발하였다. 개발된 감성분석 방법론은 수집된 비정형 데이터에 대한 형태소 분석, 감성사전 구축, 감성 판별 등으로 구성되어 있다. 개발된 방법론은 고속도로 관련 트윗 데이터를 이용하여 검증하였다. 분석 결과, 분석 기간 동안 고속도로와 관련하여 공사, 사고에 대한 정보 전달이 많이 이루어졌음을 짐작할 수 있었다. 또한 공사 및 사고로 인해 발생한 지체에 대하여 이용자들의 불만이 높았던 것으로 판단된다. 결론적으로 SNS 감성분석이 교통분야에서도 의미 있는 정보추출이 가능한 기법임을 확인하였다.

암호화폐 수익률 예측력 향상을 위한 요인 강화 (Factor augmentation for cryptocurrency return forecasting)

  • 염예빈;한유진;이재현;박세령;이정우;백창룡
    • 응용통계연구
    • /
    • 제35권2호
    • /
    • pp.189-201
    • /
    • 2022
  • 본 연구는 외부 요인을 모형에 강화시켜 암호화폐 수익률 예측력을 향상시키는 방법에 대해서 다루고 있다. 고려한 요인으로는 크게 나누어 금융 경제적 요인 및 심리적 요인을 고려하였다. 먼저 금융 경제적 요인을 반용하기 위해서 주성분 요인을 사용하여 수 많은 변수를 차원축소를 통해서 모형에 반영하였다. 또한 심리적 요인을 위해서는 뉴스 기사 데이터를 활용하여 산출해낸 감성지수를 활용하였다. 이러한 요인들은 충격반응함수 분석을 통해서 요인들의 의미와 영향력을 시각화하였다. 또한 전통적인 ARIMAX 뿐 만 아니라 랜덤포레스트 및 딥러닝 모형을 활용하여 비선형성을 반영하였다. 그 결과 요인 강화가 암호화폐 수익률 예측력을 향상시킴을 실증분석을 통해 밝혔으며 그 중에서 딥러닝 모형인 GRU가 가장 좋은 예측 성능을 보임을 관찰하였다.