본 연구는 금융 분야에서 중요한 증감 정보를 효과적으로 이해하고 감성을 정확하게 분류하기 위한 언어 모델의 학습 방법론을 탐구한다. 연구의 핵심 목표는 언어 모델이 금융과 관련된 증감 표현을 잘 이해할 수 있게 하기 위한 적절한 데이터 세트를 찾는 것이다. 이를 위해, Wall Street Journal에서 수집한 금융 뉴스 문장 중 증감 관련 단어를 포함하는 문장을 선별했고, 이와 함께 적절한 프롬프트를 사용해 GPT-3.5-turbo-1106으로 생성한 문장을 각각 post-training에 사용했다. Post-training에 사용한 데이터 세트가 언어 모델의 학습에 어떠한 영향을 미치는지 금융 감성 분석 벤치마크 데이터 세트인 Financial PhraseBank를 통해 성능을 비교하며 분석했으며, 그 결과 금융 분야에 특화된 언어 모델인 FinBERT를 추가 학습한 결과가 일반적인 도메인에서 사전 학습된 모델인 BERT를 추가 학습한 것보다 더 높은 성능을 보였다. 또 금융 뉴스로 post-training을 진행한 것이 생성한 문장을 post-training을 진행한 것에 비해 전반적으로 성능이 높음을 보였으나, 일반화가 더욱 요구되는 환경에서는 생성된 문장으로 추가 학습한 모델이 더 높은 성능을 보였다. 이러한 결과는 개선하고자 하는 부분의 도메인이 사용하고자 하는 언어 모델과의 도메인과 일치해야 한다는 것과 적절한 데이터 세트의 선택이 언어 모델의 이해도 및 예측 성능 향상에 중요함을 시사한다. 연구 결과는 특히 금융 분야에서 감성 분석과 관련된 과제를 수행할 때 언어 모델의 성능을 최적화하기 위한 방법론을 제시하며, 향후 금융 분야에서의 더욱 정교한 언어 이해 및 감성분석을 위한 연구 방향을 제시한다. 이러한 연구는 금융 분야 뿐만 아니라 다른 도메인에서의 언어 모델 학습에도 의미 있는 통찰을 제공할 수 있다.
본 논문에서는 금융 뉴스 데이터로 추가적인 사전 학습이 진행된 BERT 기반 모델인 FinBERT 모델을 사용하여 금융 영역에서 감성 분석 시 학습시킬 데이터와 그에 맞는 하이퍼파라미터를 찾는 방법을 소개한다. 우리의 목표는 다양한 데이터 세트를 활용하고 하이퍼파라미터를 미세 조정하여 정확한 감성 분석을 위해 FinBERT 모델을 가장 잘 활용하는 방법에 대한 포괄적인 가이드를 제공하는 것이다. 이 연구에서는 제안된 FinBERT 모델 미세 조정 접근법의 아키텍처와 워크플로우를 개괄적으로 설명하고, 감성 분석 태스크를 위한 다양한 데이터 세트와 하이퍼파라미터의 성능을 강조한다. 또한, 감성 라벨링 작업에 GPT-3를 사용함으로써 GPT-3가 적절한 라벨러 역할을 하는지에 대한 신뢰성을 검증한다. 결과적으로 미세 조정된 FinBERT 모델이 다양한 데이터 세트에서 우수한 성능을 발휘 한다는 것을 보여주었고, 각 데이터 세트에 대해 전반적으로 우수한 성능을 보이는 학습률 5e-5와 배치 크기 64의 최적의 조합을 찾았다. 또 일반 도메인의 뉴스보다 일반 도메인의 트위터 데이터 세트에서 성능이 크게 향상됨을 기반으로 금융 뉴스 데이터만으로만 추가적으로 학습시키는 FinBERT 모델에 대한 의구심을 제시한다. 이를 통해 FinBERT 모델에 대한 최적의 접근 방식을 결정하는 복잡한 프로세스를 간소화하고 금융 분야 감성 분석 모델을 위한 추가적인 학습 데이터 세트와 미세 조정 시 하이퍼파라미터 선정에 대한 가이드라인을 제시한다.
본 연구는 핀테크를 중심으로 국내 디지털 금융 서비스 시장의 트렌드를 파악하고자 신문기사와 트위터 데이터를 대상으로 텍스트마이닝 기법을 사용하여 분석을 진행하였다. 핀테크 시장의 성장 과정에 있어서 간편결제 서비스 도입, 인터넷전문은행 출범, 데이터 3법 개정안 통과, 마이데이터 사업 신청 등 중요하게 작용을 한 4가지 시점을 기준으로 빈도분석을 수행하여 핵심 키워드 간의 차이를 살펴보았다. 또한 핀테크 선도 국가인 중국·미국과 미래 키워드를 핀테크 키워드와 결합한 빈도분석 결과를 통해 세계 시장 속에서 국내 핀테크 산업의 현 위치와 미래 시장 전망을 예측하였다. 마지막으로 트위터 트윗을 대상으로 감성분석을 진행하여 핀테크 서비스에 대한 소비자의 기대와 우려를 정량화하였다. 따라서 본 연구는 금융 생태계 변화 과정을 살펴보고, 분석 결과를 종합함으로써 정부와 기업이 향후 핀테크 시장 발전에 있어서 활용할 수 있는 전략적 방향성 및 대응 전략을 제시한 점에서 의의가 있다.
본 논문에서는 미세 조정(fine-tuning) 및 비지도 학습 기법을 사용하여 경제 분야 텍스트인 금융 리포트에 대해 속성 기반 감성 분석(aspect-based sentiment analysis) 데이터셋을 반자동적으로 구축할 수 있는 방법론에 대한 연구를 수행하였다. 구축 시에는 속성기반 감성분석 주석 요소 중 극성, 속성 카테고리 정보를 부착하였으며, 미세조정과 비지도 학습 기법인 BERTopic을 통해 주석 요소를 자동적으로 부착하는 한편 이를 수동으로 검수하여 데이터셋의 완성도를 높이고자 하였다. 데이터셋에 대한 실험 결과, 극성 반자동 주석의 경우 기존에 구축된 데이터셋과 비슷한 수준의 성능을 보였다. 한편 정성적 분석을 통해 자동 구축을 동일하게 수행하였더라도 기술의 원리와 발달 정도에 따라 결과가 상이하게 달라짐을 관찰함으로써 경제 도메인의 ABSA 데이터셋 구축에 여전히 발전 여지가 있음을 확인할 수 있었다.
본 연구는 빅데이터 분석 방법인 오피니언 마이닝을 사용하여 아파트 가격 관련 뉴스 기사의 극성을 확인하는 연구로 자료는 2012년, 2018년 2년간 네이버에 게시된 인터넷 뉴스 기사를 사용하였다. 감성분석 모형을 모델링하고 주제 지향형 감성사전 구축 방법을 제안하였다. 제안한 감성분석 모형을 통해 분석한 결과, 아파트 가격이 상승하는 시기에는 사회적 이슈 선정에 있어서 언론사의 성향에 따라 차이가 있는 것을 확인하였고 정부와 동일한 성향의 언론사에서 긍정 기사가 많은 것을 확인하였다. 부동산 분야에서 사용할 수 있는 감성분석 모형을 제시하고 부동산 관련 비정형 데이터의 극성을 분석하였다는 것에 의의가 있다. 향후 다양한 분야에 접목하기 위해서는 주제별 감성사전을 구축해야 하며 다양한 비정형 데이터를 수집하고 수집 기간을 확장하는 것이 필요하다.
오늘날 금융 산업은 개방화와 자율화에 따른 외국금융브랜드의 진출 및 증가, 다양한 금융브랜드의 신설 등으로 급속도로 변화하고 있다. 이러한 변화의 추세 속에서 기업들은 점차 자사의 브랜드 차별화를 위해 다양한 마케팅 방법을 동원하고 있다. 그 중 최근의 금융 브랜드에서 사용하는 '컬러마케팅'은 중요한 브랜드 차별화 요소로 인식되고 있다. 그러나 일부 브랜드를 제외하고 기업의 경영성향을 내포한 브랜드의 컬러마케팅과 투자자의 투자성향에 근거한 컬러선호가 상이함이 있다고 보여진다. 이는 커뮤니케이션의 목적인 브랜드이미지 문제와도 관계가 있을 것이라고 생각된다. 따라서 본 연구는 기업과 고객 간의 효율적인 커뮤니케이션 방안을 제시하기 위해 현재 증권회사들의 브랜드 컬러마케팅과 개인금융 투자자의 투자성향 선호컬러의 상관관계에 대해서 확인해 보고자 하였다. 롤랑 바르트의 컬러의 기호학적 의미해석과 실제 투자자들의 투자성향별 집단의 선호컬러와는 차이가 있음이 확인해 볼 수 있었다. 즉, 공격적인 투자성향을 가진 투자자의 경우 열정적이며 적극성을 상징하는 적색이나 주황의 강렬한 컬러를 선호할 것으로 예상 하였으나 분석 결과 뜻밖에도 의외의 컬러를 선호하는 것으로 알 수 있었다. 이러한 분석들을 토대로 증권사의 경영성향과 투자자의 컬러성향과의 관계를 보다 면밀히 조사하고 체계화하는 과정의 일환으로 본 연구 결과는 향후 맞이하게 될 자본시장통합법에 따른 시장개방에서 금융브랜드와 고객과의 커뮤니케이션 수단의 기초적인 연구 자료가 될 수 있기를 기대한다.
최근 텍스트분류, 감성분석, 질의응답 등의 자연어 처리를 위해서 사전학습언어모델(Pre-trained Language Model, PLM)의 중요성은 날로 강조되고 있다. 한국어 PLM은 범용적인 도메인의 자연어 처리에서 높은 성능을 보이나 금융, 제조, 법률, 의료 등의 특화된 도메인에서는 성능이 미약하다. 본 연구는 금융도메인 뿐만 아니라 범용도메인에서도 우수한 성능을 보이는 금융특화 언어모델의 구축을 위해 언어모델의 학습과정과 미세조정 방법을 제안하는 것이 주요 목표이다. 금융도메인 특화언어모델을 구축하는 과정은 (1) 금융데이터 수집 및 전처리, (2) PLM 또는 파운데이션 모델 등 모델 아키텍처 선정, (3) 도메인 데이터 학습과 인스트럭션 튜닝, (4) 모델 검증 및 평가, (5) 모델 배포 및 활용 등으로 구성된다. 이를 통해 금융도메인의 특성을 살린 사전학습 데이터 구축방안과 효율적인 LLM 훈련방법인 적응학습과 인스트럭션 튜닝기법을 제안하였다.
최근 새로운 ICT 흐름으로 부상하고 있는 챗봇은 금융분야에서 활발한 도입이 되고 있다. 챗봇은 사용자와 대화의 인터렉션을 통해서 서비스를 수행한다. 본 연구는 금융 서비스 챗봇의 인터렉션 대화유형이 사용자의 유용성, 사용성, 감성, 보안성에 미치는 효과에 대해 알아보고자 하였다. 이론적 고찰을 통해 챗봇의 구현방식에 기반한 대화방식에 따라 닫힌대화, 열린대화, 혼합대화 유형으로 나누어 연구를 진행하였다. 3 가지 유형의 금융 챗봇 프로토타입을 제작하였고, 실험자들은 계좌조회, 계좌이체, Q&A 의 금융 테스크 수행 후 설문조사를 실시하였다. 실험연구분석 결과 챗봇의 인터렉션 대화 유형은 유용성, 사용성에 영향을 미치는 것으로 나타났다. 사용자들은 닫힌대화와 혼합대화의 인터렉션이 금융 서비스를 오조작없이 쉽게 처리할 수 있게 하는 직관적인 인터페이스로써 선호한 것으로 나타났다. 본 연구는 자연스러운 대화를 통해 서비스를 제공하는 인공지능의 감성적인 요소와 금융 업무를 수행하는 기능적인 요소를 모두 고려해야 하는 금융 챗봇 사용자들의 심층적인 이해를 필요로 하는 사용자 경험 향상을 위한 자료로 활용될 수 있다.
최근 SNS 이용이 활발해짐에 따라 많은 사람들이 특정 이벤트 등에 대한 자신들의 생각을 비정형 데이터인 텍스트 형태로 자신의 SNS에 게시하고 있다. 이에 따라 금융, 유통 등 다양한 분야에서 이미 SNS를 이용하여 서비스 만족도 조사, 소비자 요구사항 모니터링, 대선 후보 선호도 등을 수행하고 있다. 하지만 교통 분야에서는 감성분석과 같은 비정형 데이터 분석을 활용하는 사례가 부족한 실정이다. 이에 본 연구에서는 한국도로공사에서 수집한 비정형 데이터인 고속도로 VOC 데이터를 이용하여 교통분야에서 사용할 수 있는 감성분석 방법론을 개발하였다. 개발된 감성분석 방법론은 수집된 비정형 데이터에 대한 형태소 분석, 감성사전 구축, 감성 판별 등으로 구성되어 있다. 개발된 방법론은 고속도로 관련 트윗 데이터를 이용하여 검증하였다. 분석 결과, 분석 기간 동안 고속도로와 관련하여 공사, 사고에 대한 정보 전달이 많이 이루어졌음을 짐작할 수 있었다. 또한 공사 및 사고로 인해 발생한 지체에 대하여 이용자들의 불만이 높았던 것으로 판단된다. 결론적으로 SNS 감성분석이 교통분야에서도 의미 있는 정보추출이 가능한 기법임을 확인하였다.
본 연구는 외부 요인을 모형에 강화시켜 암호화폐 수익률 예측력을 향상시키는 방법에 대해서 다루고 있다. 고려한 요인으로는 크게 나누어 금융 경제적 요인 및 심리적 요인을 고려하였다. 먼저 금융 경제적 요인을 반용하기 위해서 주성분 요인을 사용하여 수 많은 변수를 차원축소를 통해서 모형에 반영하였다. 또한 심리적 요인을 위해서는 뉴스 기사 데이터를 활용하여 산출해낸 감성지수를 활용하였다. 이러한 요인들은 충격반응함수 분석을 통해서 요인들의 의미와 영향력을 시각화하였다. 또한 전통적인 ARIMAX 뿐 만 아니라 랜덤포레스트 및 딥러닝 모형을 활용하여 비선형성을 반영하였다. 그 결과 요인 강화가 암호화폐 수익률 예측력을 향상시킴을 실증분석을 통해 밝혔으며 그 중에서 딥러닝 모형인 GRU가 가장 좋은 예측 성능을 보임을 관찰하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.