• Title/Summary/Keyword: 금속-Al2O3

Search Result 543, Processing Time 0.033 seconds

Effect of Pt-Sn/Al2O3 catalysts mixed with metal oxides for propane dehydrogenation (프로판 탈수소 반응에 미치는 금속산화물과 혼합된 Pt-Sn/Al2O3 촉매의 영향)

  • Jung, Jae Won;Koh, Hyoung Lim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.401-410
    • /
    • 2016
  • The $Pt-Sn/Al_2O_3$ catalysts mixed with metal oxides for propane dehydrogenation were studied. $Cu-Mn/{\gamma}-Al_2O_3$, $Ni-Mn/{\gamma}-Al_2O_3$, $Cu/{\alpha}-Al_2O_3$ was prepared and mixed with $Pt-Sn/Al_2O_3$ to measure the activity for propane dehydrogenation. As standard sample, $Pt-Sn/Al_2O_3$ catalyst mixed with glassbead was adopted. In the case of catalytic activity test after non-reductive pretreatment of catalyst and metal oxide, $Pt-Sn/Al_2O_3$ mixed with $Cu-Mn/{\gamma}-Al_2O_3$ showed higher conversion of 15% and similar selectivity at $576.5^{\circ}C$, compared to conversion of 8% in standard sample. In the case of catalytic activity test after reductive pretreatment of catalyst and metal oxde, $Cu/{\alpha}-Al_2O_3$ showed higer yield than standard sample. But, increase of yield of most of samples after reductive pretreatment was not significant, so it was found that lattice oxygen of $Cu-Mn/{\gamma}-Al_2O_3$ is effective to propane dehydrogenation.

Fatigue and Cyclic Deformation Behavior with the Unreinforced Matrix Alloy and Al/$Al_2O_3$ Metal Matrix Composites (기지금속과 $Al_2O_3$/Al 금속복합재료의 피로 및 주기적 변형거동)

  • 송정일
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.1-11
    • /
    • 1999
  • Cyclic deformation and fatigue behavior of $Al/$Al_2O_3$ metal matrix composites and matrix alloy were studied. Hatigue strength Al/$Al_2O_3$ composites was about 210MPa, and that of Al matrix alloy was 170MPa. Most of the resultant displacement due to permanent plastic deformation occurred in less than the first 5% of fatigue life. In case of composites, decrease of cyclic displacement was smaller than that of matrix because the reinforcements acted as barriers to dislocation movement. Consequently, cyclic stress-displacement response curve can be considered to have these atages ; an initial few cycles of rapid hardening, followed by progressive hardening for most the fatigue life, and then just prior to failure, an instantaneous drop in stress carrying capability of the material due to multiple microcrack initiation, eventual coalescence of microcrack to form a macrocrack and then rapid macroscopic crack growth.

  • PDF

Effect of MgO on the Viscous Behavior of CaO-SiO2-Al2O3-MgO Welding Flux System (CaO-SiO2-Al2O3-MgO계 용접 플럭스계의 점성에 미치는 MgO의 영향성에 관한 연구)

  • Kim, Hyuk;Jung, Eun Jin;Jeon, Young Duck;Min, Dong Joon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.114-120
    • /
    • 2009
  • The viscosities of $CaO-SiO_2-Al_2O_3-MgO$ flux were measured under the condition of $CaO/SiO_2=1.0-1.3$ and 5-20 wt%MgO. Submerged arc welding flux with $5wt%Al_2O_3$ content had the lowest critical temperature and widest solid-liquid coexisting region at about 5 wt%MgO. It indicateds that both critical temperature and viscosity depend on the kind of primary phase of molten flux. Viscous behavior of the molten flux at 1773 K was analyzed in the view of silicate structure changed by FT-IR spectroscopy. Based on the critical temperature and the behavior of viscosity at a fixed temperature, it could be proposed that the contents of MgO and $Al_2O_3$ in SAW flux show a pronounced effect on preventing contamination in maintaining the liquid phase flux after welding process.

Effects of Penetration Direction on Contact Damage and Microstructure in ${Al_2}{O_3}$/Al Composite Fabricated by Reactive Metal Penetration (반응금속 침투법으로 제조된 ${Al_2}{O_3}$/Al 복합체에서 침투방향성이 미세구조 및 접촉손상에 미치는 영향)

  • 백운규;정연길
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.9
    • /
    • pp.909-914
    • /
    • 2000
  • 반응금속 침투법으로 제조한 $Al_2$O$_3$/Al 복합체의 파괴특성과 손상 내구성을 침투방향성에 따라 관찰하였으며, 복합체는 $Al_2$O$_3$단일상보다 향상된 파괴인성과 Al 단일상보다 높은 경도값을 나타내었다. Vickers 압입법을 사용한 복합체의 손상형태에서는 침투방향에 따른 각각의 미세구조에 의해 상이한 특성을 나타내었으며, 헤르찌안 압입법을 사용한 복합체의 손상거동은 $Al_2$O$_3$과 Al의 중간거동을 나타내었다. 헤르찌안 압입 후 강도저하시험으로 복합체가 갖는 우수한 결함저항성을 관찰할 수 있었으며, 높은 헤르찌안 하중에서는 복합체의 강도저하 특성이 복합체의 미세구조에 의존함을 관찰할 수 있었다. 이와 함께 복합체에서의 반응금속 침투방향성, 미세구조 그리고 손상 내구성 사이 상호연관성에 대해 논의하였다.

  • PDF

Hot Corrosion of NiCrAlY/(ZrO2-CeO2-Y2O3) Composite Coatings in Molten Salt (내열복합코팅 NiCrAlY/(ZrO2-CeO2-Y2O3)의 용융염 부식)

  • Lee, Jae-Ho;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.116-116
    • /
    • 2013
  • (Ni-22Cr-10Al-1Y)와 ($ZrO_2-25CeO_2-2.5Y_2O_3$)로 구성되는 금속/세라믹 복합코팅을 대기용사(ASP; air plasma spay)으로 철 기판위에 1:3, 2:2, 3:1의 무게비로 혼합하여 제조하였다. 용사된 코팅은 금속이영지역과 세라믹잉여지역으로 구별되고, 용사중에 NiCrAlY중의 Al이 선택적으로 산화되어 Al2O3가 계면에 존재하였다. 복합코팅은 $NaCl-Na_2SO_4$ 용융염에서 $800{\sim}900^{\circ}C$, 50시간 동안 부식실험을 실시하였다. 부식생성물은 NiO, $Cr_2O_3$, ${\alpha}-Al_2O_3$가 생성되는데, 부식이 진행되면서 용해되었다. 용융염 부식이 진행되는 동안에 Cr, Al이 외방확산하였고, Na, Cl, S는 내부로 확산되었다. 시간 및 온도뿐만 아니라 금속의 양이 증가할수록 코팅의 내식성은 저하되었다.

  • PDF

Antioxidation mechanism of Al metal powders on $Al_2O_3-C$ refractory ($Al_2O_3-C$계 내화물에서 알루미늄 금속분말의 산화억제 메카니즘)

  • 류정호;임창성;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.97-105
    • /
    • 1998
  • Antioxidation mechanism of Al metal powders on $Al_2O_3-C$ refractory was investigated in temperature range from 800 to $1400^{\circ}C$. The addition of 5 wt% Al metal powders suppressed the oxidation of carbon in $Al_2O_3$-C sample. The carbons were distributed uniformly on the surface and the interface of the $Al_2O_3$-C-Al. Reaction products of $Al_4C_3$ and AIN were found with a composition of Al-C at temperatures between 800 and $1200^{\circ}C$ and transformed to $Al_2O_3$ above $1400^{\circ}C$. Cavity structures related to the to the formation of $Al_4C_3$ were observed for the AI-C after heating at $1000^{\circ}C$ ofr 1 hour. Thermodynamic mechanism was considered to discuss the formation $Al_4C_3$, AlN and their transformation to $Al_2O_3$, which leads to the effect of oxidation resistance.

  • PDF

Catalytic CO2 Methanation over Ni Catalyst Supported on Metal-Ceramic Core-Shell Microstructures (금속-세라믹 코어-쉘 복합체에 담지된 Ni 금속 촉매를 적용한 CO2 메탄화 반응 특성연구)

  • Lee, Hyunju;Han, Dohyun;Lee, Doohwan
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.154-162
    • /
    • 2022
  • Microstructured Al@Al2O3 and Al@Ni-Al LDH (LDH = layered double hydroxide) core-shell metal-ceramic composites are prepared by hydrothermal reactions of aluminum (Al) metal substrates. Controlled hydrothermal reactions of Al metal substrates induce the hydrothermal dissolution of Al ions at the Al-substrate/solution interface and reconstruction as porous metal-hydroxides on the Al substrate, thereby constructing unique metal-ceramic core-shell composite structures. The morphology, composition, and crystal structure of the core-shell composites are affected largely by the ions in the hydrothermal solution; therefore, the critical physicochemical and surface properties of these unique metal-ceramic core-shell microstructures can be modulated effectively by varying the solution composition. A Ni/Al@Al2O3 catalyst with highly dispersed catalytic Ni nanoparticles on an Al@Al2O3 core-shell substrate was prepared by a controlled reduction of an Al@Ni-Al LDH core-shell prepared by hydrothermal reactions of Al in nickel nitrate solution. The reduction of Al@Ni-Al LDH leads to the exolution of Ni ions from the LDH shell, thereby constructing the Ni nanoparticles dispersed on the Al@Al2O3. The catalytic properties of the Ni/Al@Al2O3 catalyst were investigated for CO2 methanation reactions. The Ni/Al@Al2O3 catalyst exhibited 2 times greater CO2 conversion than a Ni/Al2O3 catalyst prepared by conventional incipient wetness impregnation and showed high structural stability. These results demonstrate the high effectiveness of the design and synthesis methods for the metal-ceramic composite catalysts derived by hydrothermal reactions of Al metal substrates.

Asymmetric Hydrogenation of Ethyl Pyruvate over Bimetallic Rh-Pt/Al2O3 Catalysts Modified with Dihydrocinchonidine (Dihydrocinchonidine으로 개질된 Rh-Pt/Al2O3 이원금속 촉매를 이용한 Ethyl Pyruvate의 비대칭 수소화)

  • Cho, Hong-Baek;Kang, Joon-seok;Park, Yeung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.369-374
    • /
    • 2006
  • $Rh-Pt/Al_{2}O_{3}$ catalysts were used for the first time to study its reaction characteristics in the asymmetric hydrogenation of ethyl pyruvate. The catalysts were prepared either by impregnation of Rh on a commercial $Pt/Al_{2}O_{3}$ or by sequential impregnation of Rh followed by impregnation of Pt on $Al_{2}O_{3}$. Reaction rate and enantiomeric excess (ee%) were compared according to the preparation method, Rh contents, and the reduction temperature of the catalyst. The physical characteristics of the catalysts were analyzed using XRD and TEM. Bimetallic $Rh-Pt/Al_{2}O_{3}$ catalysts showed an improved reaction rate and optical purity (63.6 ee%) with increasing the reduction temperature. The variation of the Rh contents as well as the preparation method elicited a big difference on the reaction rate, while enantiomeric excess (ee%) was lower (56~60%) with all bimetallic catalysts than with monometallic $Pt/Al_{2}O_{3}$ catalyst.

Fabrication and mechanical properties of $Al/Al_2O_3$ composites by reactive metal penetration method (반응 금속 침투법에 의한 $Al/Al_2O_3$복합체의 제조 및 기계적 특성)

  • 윤영훈;홍상우;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.6
    • /
    • pp.239-245
    • /
    • 2001
  • $Al/Al_2O_3$composites were prepared from the reaction of mullite preforms and amorphous silica in aluminum melt at $1100^{\circ}C$ for 5 hrs. The chemical reaction between mullite preform and aluminum melt has formed the interconnected microstructure. The metal content of $Al/Al_2O_3$composite was controlled with the variable of the apparent porosity according to the sintering temperature of mullite preforms; $1600^{\circ}C$,$ 1625^{\circ}C$, $1650^{\circ}C$ and $1700^{\circ}C$, the mechanical properties of $Al/Al_2O_3$composite were investigated upon the content of Al. The mullite preform sintered above $1600^{\circ}C$ showed the chemical reaction with the penetrated Al melt, but the mullite sintered at $1600^{\circ}C$ didnt react with aluminum melt owing to the non-wetting of Al melt/mullite preform. The influences of penetration direction on the mechanical properties of composites were considered with the two different models of the perpendicular pattern and the parallel pattern to the direction of Al melt penetration. With the increase of Al metal penetration content, the fracture strength of $Al/Al_2O_3$composite decreased and the fracture toughness of composite increased. The microstructure of $Al/Al_2O_3$composite was determined by the direction of metal penetration, but the fracture strength and fracture toughness of composite didnt show the dependence on metal penetration direction.

  • PDF

Decomposition Study of Acetaldehyde by Metal-oxide Catalysts (금속산화물 촉매에 의한 $CH_3CHO$의 분해반응 연구)

  • Lee, Chang-Seop;Kim, Young-Eun;Choi, Sung-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.2 s.35
    • /
    • pp.25-30
    • /
    • 2007
  • The catalysts for decomposition reaction of acetaldehyde were investigated. The catalysts were prepared with transition metal Ni, Mo, Al on ${\gamma}-Al_2O_3$ support by impregnation method. Physio-chemical properties of catalysts were characterized by SEM-EDS, XRD, XPS, BET and TPR techniques. The conversion efficiency of catalysts for acetaldehyde was measured in the temperature range of $150{\sim}500^{\circ}C$ by GC through the micro reactor system. The 8 wt% $Ni/{\gamma}-Al_2O_3$ was found to be the most active catalyst of mono-metal catalysts tested, and the 1-3 wt% $Ni-Al/{\gamma}-Al_2O_3$ showed higher conversion efficiency than other bimetallic catalysts.

  • PDF