• Title/Summary/Keyword: 금속 킬레이트

Search Result 95, Processing Time 0.017 seconds

Solvent Extraction of Trace Amount of Ni(II) in Sea Water by using Salen[N,N'-bis(salicylidene)ethylenediamine] (Salen[N,N'-bis(salicylidene)ethylenediamine]을 이용한 해수 중 극미량 니켈의 용매추출)

  • In, Gyo;Choi, Jong-Moon;Kim, Young-Sang
    • Analytical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.481-488
    • /
    • 2004
  • Solvent extraction of Ni(II) into a chloroform by using salen[N,N'-Bis (salicylidene)-ethylenediamine] as a ligand has been studied. Salen was synthesized from ethylenediamine and salicylaldehyde by simple condensation reaction in an ethanol. Salen formed a 1 : 1 complex with Ni(II) and its extraction constant was $10^{5.12}$. For the determination of Ni(II) in sea water samples, some experimental conditions such as pH of solution, amount of salen, acid type and concentration for back extraction, extraction time, and influence of foreign ions were optimized by using a synthetic sea water. The sea water of which the composition was similar to a natural sea water was synthesized in this laboratory. Trace Ni(II) was extracted into the chloroform in the weak basic solution above pH 8. And the nickel could be quantitatively extracted with the concentration of salen higher than $1.2{\times}10^{-4}mol/L$. This concentration was more than 180 times of Ni(II) in the solution with a mole ratio. Real samples of Korean coastal sea water were analyzed under optimized conditions. Even though Ni(II) was not detected in these samples. Recoveries more than 98% were obtained in the samples which 40 ng/mL of Ni(II) was spiked. And detection limit of proposed method was 1.3 ng/mL. From these results, it could be known that salen of this type would be applied for the determination of trace metals as an organic chelating reagent.

Establishment of Preparation Conditions for High-Tc Superconducting Y-Ba-Cu-O Thin Film by Chemical Vapor Deposition (화학증착법에 의한 고온 초전도 Y-Ba-Cu-O 박막의 제조 조건 확립에 관한 연구)

  • Park, Joung-Shik;Cho, Ik-Joon;Kim, Chun-Yeong;Lee, Hee-Gyoun;Won, Dong-Yeon;Shin, Hyung-Shik
    • Applied Chemistry for Engineering
    • /
    • v.3 no.3
    • /
    • pp.412-421
    • /
    • 1992
  • The superconducting thin films have shown a growing possibility for practical application in microelectronic fields in recent years. In this study, the high Tc superconducting Y-Ba-Cu-O thin films were prepared on various substrates by chemical vapor deposition method using organic metal chelates of $Y(thd)_3$, $Ba(thd)_2$, and $Cu(thd)_2$ as source materials. The deposition reactions were carried out on single crystalline MgO(100), YSZ(100), $SrTiO_3(100)$, and polycrystalline $SrTiO_3$ substrates. Deposition thickness of thin films was linearly increased with the increase of deposition time. It turned out that the Y-Ba-Cu-O thin films on MgO(100), YSZ(100), and $SrTiO_3(100)$ single crystal substrates showed superconductivities above liquid nitrogen temperature($T_{c,onset}=87{\sim}89K$, $T_{c,zero}=85{\sim}86K$), but the one on polycrystalline $SrTiO_3$ substrate did not.

  • PDF

Isolation of copper-resistant bacteria with plant growth promoting capability (식물 생장을 촉진할 수 있는 구리 내성 세균의 분리)

  • Kim, Min-Ju;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.251-256
    • /
    • 2017
  • Some rhizobacteria were isolated, that have copper resistance and can confer copper resistance to plants allowing growth under copper stress. Isolated strains Pseudomonas veronii MS1 and P. migulae MS2 produced 0.13 and 0.26 mmol/ml of siderophore, that is a metal-chelating agent, and also showed 64.6 and 77.9% of biosorption ability for Cu in 20 mg/L Cu solution, respectively. Copper can catalyze a formation of harmful free radicals, which may cause oxidative stress in organisms. Removal activity of 1,1-diphenyl-2-picryl hydrazyl radical and antioxidant capacity of strains MS1 and MS2 increased up to 82.6 and 78.1%, respectively compared to those of control at 24 h of incubation. They exhibited 7.10 and $6.42{\mu}mol$ ${\alpha}$-ketobutyrate mg/h of 1-aminocyclopropane-1-carboxylic acid deaminase activity, respectively, which reduced levels of stress hormone, ethylene in plants, and also produced indole-3-acetic acid and salicyclic acid that can help plant growth under abiotic stress. All these results indicated that these copper-resistant rhizobacteria could confer copper resistance and growth promotion to plants.

Studies on Solvent Extraction and Analytical Application of Metal-dithizone Complexes(I). Separation and Determination of Trace Heavy Metals in Urine (Dithizone 금속착물의 용매추출 및 분석적 응용(제1보). 뇨중 흔적량 중금속 원소의 분리 정량)

  • Jeon, Moon-Kyo;Choi, Jong-Moon;Kim, Young-Sang
    • Analytical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.336-344
    • /
    • 1996
  • The extraction of trace cobalt, copper, nickel, cadmium, lead and zinc in urine samples of organic and alkali metal matrix into chloroform by the complex with a dithizone was studied for graphite furnace AAS determination. Various experimental conditions such as the pretreatment of urine, the pH of sample solution, and dithizone concentration in a solvent were optimized for the effective extraction, and some essential conditions were also studied for the back-extraction and digestion as well. All organic materials in 100 mL urine were destructed by the digestion with conc. $HNO_3$ 30 mL and 30% $H_2O_2$ 50 mL. Here, $H_2O_2$ was added dropwise with each 5.0 mL, serially. Analytes were extracted into 15.0 mL chloroform of 0.1% dithizone from the digested urine at pH 8.0 by shaking for 90 minutes. The pH was adjusted with a commercial buffer solution. Among analytes, cadmium, lead and zinc were back-extracted to 10.00 mL of 0.2 M $HNO_3$ from the solvent for the determination, and after the organic solvent was evaporated, others were dissolved with $HNO_3-H_2O_2$ and diluted to 10.00 mL with a deionized water. Synthetic digested urines were used to obtain optimum conditions and to plot calibration-eurves. Average recoveries of 77 to 109% for each element were obtained in sample solutions in which given amounts of analytes were added, and detection limits were Cd 0.09, Pb 0.59, Zn 0.18, Co 0.24, Cu 1.3 and Ni 1.7 ng/mL, respectively. It was concluded that this method could be applied for the determination of heavy elements in urine samples without any interferences of organic materials and major alkaline elements.

  • PDF

Application of Plant Flavonoids as Natural Antioxidants in Poultry Production (가금 생산에서 천연 항산화제로서 식물성 Flavonoids의적용)

  • Kang-Min, Seomoon;In-Surk, Jang
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.211-220
    • /
    • 2022
  • Poultry are exposed to extremely high levels of oxidative stress as a consequence of the excessive production of reactive oxygen species (ROS) induced by endogenous and exogenous stressors, such as high-stocking densities, thermal stress, environmental and feed contamination, along with factors associated with intensive breeding systems. Oxidative stress promotes lipid peroxidation, DNA damage, and inflammation, which can have detrimental effects on the health of birds. During the course of evolution, birds have developed antioxidant defense mechanisms that contribute to maintaining homeostasis when exposed to endogenous and exogenous stressors. The primary antioxidant defense systems are enzymatic and non-enzymatic in nature and play roles in protecting cells from ROS attack. Recently, plant flavonoids, which have been established to reduce oxidative stress, have been attracting considerable attention as potential feed additives. Flavonoids are a group of polyphenolic compounds that can be stabilized by binding structural compounds with ROS, and can promote the elimination of ROS by inducing the expression of antioxidant enzymes. However, although flavonoids can contribute to reducing lipid peroxidation and thereby enhance the antioxidant capacity of birds, they have low solubility in the gastrointestinal tract, and consequently, it is necessary to develop a delivery technology that can facilitate the effect intestinal absorption of these compounds. Furthermore, it is important to determine the dietary levels of flavonoids by assessing the exact antioxidant effects in the gastrointestinal tract wherein the concentrations of dietary flavonoids are highest. It is also necessary to examine the expression of transcriptional factors and vitagenes associated with the efficient antioxidant effects induced by flavonoids. It is anticipated that the application of flavonoids as natural antioxidants will become a particularly important field in the poultry industry.