• Title/Summary/Keyword: 금속화

Search Result 2,196, Processing Time 0.034 seconds

Characteristics of methane reforming with carbon dioxide using transition metal catalyts (전이금속 촉매를 이용한 이산화탄소와 메탄의 개질 특성)

  • Jang, Hyun Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.644-650
    • /
    • 2021
  • This study characterized the reforming of methane with carbon dioxide, which is a major cause of global warming. The methane decomposition reaction with carbon dioxide was carried out using transition metal catalysts. The reactivity of tin was lower than that of a transition metal, such as nickel and iron. Most of the decomposition reaction occurred in the solid state. The melting point of tin is 505.03 K. Tin reacts in a liquid phase at the reaction temperature and has the advantage of separating carbon produced by the decomposition of methane from the liquid tin catalyst. Therefore, deactivation due to the deposition of carbon in the liquid tin can be prevented. Methane decomposition with carbon dioxide produced carbon monoxide and hydrogen. Ni was used to promote the catalyst performance and enhance the activity of the catalyst and lifetime. In this study, catalysts were synthesized using the excess wet impregnation method. The effect of the reaction temperature, space velocity was measured to calculate the activity of catalysts, such as the activation energy and regeneration of catalysts. The carbon-deposited tin catalyst regeneration temperature was 1023 K. The reactivity was improved using a nickel co-catalyst and a water supply.

Effect of Porous Flow Field on PEMFC Performance with Dead Ended Anode System (Dead ended anode 시스템에서 다공성 유로가 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.646-652
    • /
    • 2022
  • The dead-end anode (DEA) system is a method that closes the anode outlet and supplies fuel by pressure. The DEA method could improve fuel usage and power efficiency through system simplification. However, flooding occurs due to water and nitrogen back diffusion from the cathode to the anode during the DEA operation. Flooding is a cause of decreased fuel cell performance and electrode degradation. Therefore, tthe structure and components of polymer electrolyte membrane fuel cell (PEMFC) should be optimized to prevent anode flooding during DEA operation. In this study, the effect of a porous flow field with metal foam on fuel cell performance and fuel efficiency improvement was investigated in the DEA system. As a result, fuel cell performance and purge interval were improved by effective water management with a porous flow field at the cathode, and it was confirmed that cathode flow field structure affects water back-diffusion. On the other hand, the effect of the porous flow field at the anode on fuel cell performance was insignificant. Purge interval was affected by metal foam properties and shown stable performance with large cell size metal foam in the DEA system.

Lithium Recovery from NCM Lithium Ion Battery by Hydrogen Reduction Followed by Water Leaching (NCM계 리튬이온 배터리 양극재의 수소환원과 수침출에 의한 리튬 회수)

  • So-Yeong Lee;So-Yeon Lee;Dae-Hyeon Lee;Ho-Sang Sohn
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.15-21
    • /
    • 2024
  • The demand for electric vehicles powered by lithium-ion batteries is continuously increasing. Recovery of valuable metals from waste lithium-ion batteries will be necessary in the future. This research investigated the effect of reaction temperature on the lithium recovery ratio from hydrogen reduction followed by water leaching from lithium-ion battery NCM-based cathode materials. As the reaction temperature increased, the weight loss ratio observed after initiation increased rapidly owing to hydrogen reduction of NiO and CoO; at the same time, the H2O amount generated increased. Above 602 ℃, the anode materials Ni and Co were reduced and existed in the metallic phases. As the hydrogen reduction temperature was increased, the Li recovery ratio also increased; at 704 ℃ and above, the Li recovery ratio reached a maximum of approximately 92%. Therefore, it is expected that Li can be selectively recovered by hydrogen reduction as a waste lithium-ion battery pretreatment, and the residue can be reprocessed to efficiently separate and recover valuable metals.

Problem Analysis and Improvement of an Experiment on Reactivityof Metals in ChemistryⅠ (화학Ⅰ 금속의 반응성 실험의 문제점 분석 및 개선방안)

  • Seong, Suk-kyoung;Choi, Chui-Im;Jeong, Dae-Hong
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.368-376
    • /
    • 2009
  • In this study we investigated and tried to understand problems monitored in an experiment on reactivity of metals in chemistry I. Three problems were discussed. First, the reason that aluminium plate does not react with other metal ions such as zinc, iron and copper was studied and the way to overcome this problem was suggested. Second, the reason that the bubbles were generated when FeS$O_4$(aq) and Zn(s) react was discussed. Third, the precipitates which appeared in the reaction of FeS$O_4$(aq) and Zn(s) were identified. Through reference study and experimental investigation, we could reach the following results. First, aluminium could not react with other metal ions due to the surface oxide layer that is formed very fast and prevents aluminium from reacting with metal ions in solution. This problem could be overcome by allowing a competing reaction of acid and aluminium during the reaction of aluminium and metal ions. Second, the observed bubbles were identified to be hydrogen gas, produced by the reaction between metals and hydronium ion in the solution. Third, black precipitates that were produced on the surface of zinc plate and exhibited magnetic property were characterized to be $Fe_3O_4$(s), and brown precipitates that were produced in the solution phase were to be $Fe_2O_3$(s) by the analysis of X-ray photoelectron spectra.

A Study on the Plasma Treatment Effect of Metal Fibersusing Micromechanical Technique (미세역학적 실험법에 의한 금속섬유의 플라즈마 처리효과에 관한 연구)

  • MiYeon Kwon;Seung Goo Lee
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.122-129
    • /
    • 2022
  • In this study, the hydrophilicity of the metal fiber is improved by introducing an oxygen-containing functional group to the fiber surface after treatment of the metal fiber using the oxygen plasma treatment time as an experimental variable. For the surface modification of metal fibers, changes in surface properties before and after plasma treatment were observed using SEM and x-ray photoelectron spectroscopy (XPS). In order to observe the effect of the plasma treatment time on the surface of the metal fiber, the change in contact angle of the metal fiber with respect to a polar solvent and a non-polar solvent was measured. After calculating the change in surface free energy using the measured contact angle, the contact angle and the surface free energy for metal fibers before and after oxygen plasma treatment were compared, and the correlation with the adhesion work was also considered. The microdroplet specimens were prepared to investigate the effect of surface changes of these metal fibers on the improvement of shear strength at the interface when combined with other materials and the interfacial shear strength was measured, and the correlation with the adhesion work was also identified. Therefore, the oxygen plasma treatment of the metal fiber results in an increase in the physical surface area on the fiber surface and a change in contact angle and surface energy according to the introduction of the oxygen-containing functional group on the surface. This surface hydrophilization resulted in improving the interfacial shear strength with the polymer resin.

Synthesis, Chemical Characterization and Catalytic Activity of Transition Metal Complexes Having Imine Based Nitrogen Donor Ligand (이민에 기초한 질소주개 리간드의 전이금속 착물 합성, 화학적 특성 및 촉매활성)

  • Hussain, Raja Azadar;Badshah, Amin;Asma, Maliha
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.23-26
    • /
    • 2010
  • A Schiff base ligand (Z)-N-((Z)-2-(sec-butylimino)-1,2-diphenylethylidene)butan-2-amine was synthesized by condensation of benzil with sec-butyl amine. Complexation of the ligand was carried out with first row transition elements, manganese(II) and nickel(II). Ligand and complexes were characterized by FTIR, elemental analysis and thermogravimetric analysis in solid state and by NMR ($^1H,\;^{13}C$) in solution form. Both the complexes demonstrate good catalytic activity for butadiene oligomerization under mild conditions with methylaluminoxane (MAO) as co-catalyst.

Photoelectrochemical production of hydrogen by anodized photoanode and enzyme (양극산화로 제조된 광어노드와 엔자임 고정화를 통한 광전기화학적 수소제조 연구)

  • Park, Minsung;Shim, Eunjung;Heo, Ahyoung;Yoon, Jaekyung;Joo, Hyunku
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.227.2-227.2
    • /
    • 2010
  • 본 연구에서는 양극산화된 $TiO_2$ 전극(anodized tubular $TiO_2$ electrode, ATTE)을 수소제조용 PEC(Photoelectrochemical)시스템에서 광어노드와 기존의 백금전극을 대체하고 $H^+$ 환원능을 향상시키기 위하여 엔자임(Pyrococcus furiosus, Pfu)을 고정화한 후 캐소드로 동시에 활용하였으며, 엔자임 고정을 위한 crosslinker 종류 및 금속담지 여부, ATTE 길이를 통한 수소발생양에 미치는 영향을 연구하였다. ATTE 표면과 엔자임의 amine group의 연결을 위하여 heterobifunctional crosslinker로써 사슬 길이가 상대적으로 짧은 Sulfo-SDA가 유리하였으며, 금속담지의 경우 짧은 튜브의 경우 1% 내에서 효과가 증진되었으나 긴 튜브의 경우는 오히려 광전류 및 궁극적으로 수소발생속도에 불리하게 작용하였다. 또한, 튜브 길이가 긴 ATTE가 짧은 ATTE 보다 수소발생양에서 더욱 효율적임을 알 수 있었다. 텅스텐산화물 담지의 가시광감응에의 담지 효과는 예비 실험 결과로 나타나지 않아, 추가적인 연구가 필요한 것으로 판단된다.

  • PDF

Surface Melting and Alloying Process for Surface Hardening of Aluminum Alloys (표면용융합금화법에 의한 Al합금의 후막표면경화기술의 현상)

  • ;中田一博
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.10-18
    • /
    • 1996
  • Al합금과 경합을 하는 경량재료에는 금속재료로서는 Mg 및 Ti이 있는데, 이들 은 고가라는 단점이 있다. 또 비금속재료로는 플라스틱.수지등이 있는데, 산업폐기물 등의 문제가 있으나, Al합금은 재활용이 용이하다. 그러나 구조재료로서의 Al합금의 특성에는 아직 많은 결점을 가지고 있으며, 가장 큰 결점의 하나는 철강재료에 비하여 내마모성이 현저하게 떨어진다는 것이다. 그러므로 이 점이 개선된다면, Al합금은 경량구조용 재료로서 다양한 분야에서 철강재료를 대신할 수 있을 것으로 전망된다. Al합금에 대한 내마모특성을 부여하기 위한 종래의 표면경화기술로서는, 고경도합금 의 채용, 알루마이드처리등이 있는데, 충분한 경도가 얻어지지 않거나, 또는 고경도가 얻어져도 경화층의 깊이가 마이크론단위에 불과하여 고하중하에서의 내마모특성 등에 대한 문제가 있었다. 이들 방법 이외에도 PVD, CVD, 도금 등에 의한 표면피복 방법과 표면의 합금화에 의한 표면경화법 등에 있어서 여러 방법들이 있으나, 경도가 높고 또한 후막의 경화층으로서 박리의 위험이 적은 표면경화처리기술은 확립되어 있지 않다고 할 수 있다. 따라서, 이 분야에 대한 기술개발이 산업계로부터 강하게 요구되 고 있으며, 또한 이것과 관련된 연구가 활발하게 진행되고 있다. 본 해설에서는. 내마 모특성에 따른 Al후막기술의 현상과 그 대표적인 기술로서, 표면용융에 의한 합금화 를 이용하는 표면경화기술에 대하여 소개한다.

  • PDF

A Simulation Study on the Removal Process of the Heavy Metal Ion in Aqueous Solution by the Functionalized Silica Beads (기능화된 실리카 비드를 이용한 수용액상의 중금속 이온의 제거공정에 대한 모사 연구)

  • Woo, Yoon-Hwan;Choo, Chang-Upp
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.150-155
    • /
    • 2011
  • The removal process of heavy metal ion in aqueous solution by the functionalized silica bead was simulated using the finite difference method. Equilibrium model and non-equilibrium model were proposed and the effects of dimensionless groups and various parameters were investigated. Freundlich isotherm was used in equilibrium model and 1st order adsorption rate expression was assumed in non-equilibrium model. The comparison results by the predictions of equilibrium and non-equilibrium models showed good agreement. The predictions of equilibrium model were compared with experimental results reported in literature and showed the marginal agreement.

Instrumented Impact Test using Subsize Charpy Specimen for Evaluating Impact Fracture Behavior in Bulk Amorphous Metals (벌크 아몰퍼스 금속의 충격파괴 거동 평가를 위한 미소 샬피 시험편을 사용한 계장화 충격 시험법)

  • Shin, Hyung-Seop;Ko, Dong-Kyun;Jung, Young-Jin;Oh, Sang-Yeob;Kim, Moon-Saeng
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.101-106
    • /
    • 2003
  • In order to investigate the mechanical behavior of newly developed materials, the evaluation of mechanical properties using small-size specimen is essential. For those purposes, an instrumented impact testing apparatus, which provides the load-displacement curve under impact loading without oscillations, was devised. To develop the test procedure with the setup, the impact behaviors of various kinds of structural materials such as S45C, SCM4, Ti alloys (Ti-6V-4Al) and Zr-based bulk amorphous metal, were investigated through the instrumented Charpy V-notch impact tests. The calibrations of the dynamic load and displacement that was calculated based on the Newton' second law were carried out through the quasi-static load test and the comparison of a directly measured value using a laser displacement meter. Satisfactory results could be obtained. The crack initiation and propagation processes during impact fracture could be well divided on the curve, depending on the intrinsic characteristic of specimen tested; ductile or brittle. The absorbed impact energy in Zr-basd BAM was largely used for crack initiation not for crack propagation process. The fracture surfaces under impact loading showed different feature when compared with the static cases.

  • PDF