• Title/Summary/Keyword: 금속합금

Search Result 1,093, Processing Time 0.029 seconds

Effect of Adhesive Shear Strength of CFRP/Ni-Cr Alloy Under Severe Environmental Condition (가혹 환경이 복합재/Ni-Cr 합금 접착전단강도에 미치는 영향 연구)

  • Cho, Hyeon-Tae;Park, Seong-Min;Kim, Min-Jun;Hoang, Van-Tho;Kim, Hak-Inn;Son, Myung-Sook;Ahn, Jong-Kee;An, Ji-Min;Choi, Jin-Ho;Nam, Young-Woo;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.275-281
    • /
    • 2020
  • The mechanical property related to lap shear strength of the joint structure between carbon fiber reinforced polymer (CFRP) composite and metal (Ni-Cr Alloy) under varying environmental conditions (temperature and humidity) was studied in order to apply to the aircraft fan blade. Room temperature dry (RTD), elevated temperature wet (ETW), and cold temperature dry (CTD) environmental conditions were chosen for investigation based on the flight conditions of aircraft. Lap shear strength tests were conducted according to ASTM Standard D3528 to evaluate the shear strength. The microstructure characteristic of failure zone was analyzed by SEM images to check the adhesive shear strength with the three environmental conditions. In comparison with shear strength for the RTD condition, the shear strength in the ETW condition was reduced by 72.8% while those for the CTD condition increased by 56.5%. The moisture absorption and high temperature in ETW condition strongly had an affect on mechanical property of adhesive, while cold temperature could enhance the adhesive shear strength due to the higher brittleness.

A Study on the Formation fo Epitaxial $CoSi_2$ Thin Film using Co/Ti Bilayer (Co/Ti이중박막을 이용한 $CoSi_2$에피박막형성에 관한 연구)

  • Kim, Jong-Ryeol;Bae, Gyu-Sik;Park, Yun-Baek;Jo, Yun-Seong
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.81-89
    • /
    • 1994
  • Ti film of lOnm thickness and Co film of 18nm thickness were sequentially e-heam evaporated onto Si (100) substrates. Metal deposited samples were rapidly thermal-annt.aled(KTA) in thr N1 en vironment a t $900^{\circ}C$ for 20 sec. to induce the reversal of metal bilayer, so that $CoSi_{2}$ thin films could be formed. The sheet resistance measured by the 4-point probe was 3.9 $\Omega /\square$This valur was maintained with increase in annealing time upto 150 seconds, showing high thermal stab~lity. Thc XRII spectra idrn tified the silicide film formed on the Si substrate as a $CoSi_{2}$ epitaxial layer. The SKM microgr;iphs showed smooth surface, and the cross-sectional TKM pictures revealed that the layer formed on the Si substrate were composed of two Co-Ti-Si alloy layers and 70nm thick $CoSi_{2}$ epl-layer. The AES analysis indicated that the native oxide on Si subs~rate was removed by TI ar the beginning of the RTA, and Ihcn that Co diffused to clean surface of Si substrate so that epitaxial $CoSi_{2}$ film could bt, formed. In thc rasp of KTA at $700^{\circ}C$. 20sec. followed by $900^{\circ}C$, 20sec., the thin film showed lower sheet resistance, but rough surface and interface owing to $CoSi_{2}$ crystal growth. The application scheme of this $CoSi_{2}$ epilayer to VLSI devices and the thermodynarnic/kinetic mechan~sms of the $CoSi_{2}$ epi-layer formation through the reversal of Co/Ti bdayer were discussed.

  • PDF

Effect of Heat Treatment on Microstructure and Fracture Behavior of STS304-Zr Alloys for Metal Waste Forms (금속고화체용 STS304-Zr 합금의 미세조직과 파괴거동에 미치는 열처리의 영향)

  • Kim, Jongwoo;Jang, Seon Ah;Han, Seung Youb;Park, Hwan Seo;Lee, Junghoon;Lee, Sunghak;Kwon, Yongjai;Lee, Jung Gu;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.174-181
    • /
    • 2018
  • Three kinds of STS304-Zr alloys were fabricated by varying the Zr content, and their microstructure and fracture properties were analyzed. Moreover, we performed heat treatment to improve their properties and studied their microstructure and fracture properties. The microstructure of the STS304-Zr alloys before and after the heat treatment process consisted of ${\alpha}-Fe$ and intermetallics: Zr(Cr, Ni, Fe)2 and Zr6Fe23. The volume fraction of the intermetallics increased with an increasing Zr content. The 11Zr specimen exhibited the lowest hardness and fine dimples and cleavage facets in a fractured surface. The 15Zr specimen had high hardness and fine cleavage facets. The 19Zr specimen had the highest hardness and large cleavage facets. After the heat treatment process, the intermetallics were spheroidized and their volume fraction increased. In addition, the specimens after the heat treatment process, the Laves phase (Zr(Cr, Ni, Fe) 2) decreased, the Zr6Fe23 phase increased and the Ni concentration in the intermetallics decreased. The hardness of all the specimens after the heat treatment process decreased because of the dislocations and residual stresses in ${\alpha}-Fe$, and the fine lamellar shaped eutectic microstructures changed into large ${\alpha}-Fe$ and spheroidized intermetallics. The cleavage facet size increased because of the decomposition of the fine lamellar-shaped eutectic microstructures and the increase in spheroidized intermetallics.

Optimization of Resistance Spot Weld Condition for Single Lap Joint of Hot Stamped 22MnB5 by Taking Heating Temperature and Heating Time into Consideration (핫스템핑 공정에서 가열온도 및 유지시간을 고려한 22MnB5의 단일겹치기 저항 점용접 조건 최적화)

  • Choi, Hong-Seok;Kim, Byung-Min;Park, Geun-Hwan;Lim, Woo-Seung;Lee, Sun-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1367-1375
    • /
    • 2010
  • In this study, optimization of the process parameters of the resistance spot welding of a sheet of aluminum-coated boron alloyed steel, 22MnB5, used in hot stamping has been performed by a Taguchi method to increase the strength of the weld joint. The process parameters selected were current, electrode force, and weld time. The heating temperature and heating time of 22MnB5 are considered to be noise factors. It was known that the variation in the thickness of the intermetallic compound layer between the aluminum-coated layer and the substrate, which influences on the formation of nugget, was generated due to the difference of diffusion reaction according to heating conditions. From the results of spot weld experiment, the optimum weld condition was determined to be when the current, electrode force, and weld time were 8kA, 4kN, and 18 cycles, respectively. The result of a test performed to verify the optimized weld condition showed that the tensile strength of the weld joint was over 32kN, which is considerably higher than the required strength, i.e., 23kN.

The measurement of oxygen and metal ratio of simulated spent fuels by wet and dry chemical analysis (습식 및 건식법에 의한 모의 사용후핵연료의 O/M비 측정)

  • Choi, Ke Chon;Lee, Chang Heon;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.117-124
    • /
    • 2003
  • Oxygen to metal ratio has been measured by wet and dry chemical analysis to study the properties of sintered $UO_2$ pellets and $U_3O_8$ in the lithium reduction process of spent pressurized water reactor fuels. Uranium dioxide pellets simulated for the spent PWR fuels with burnup values of 20,000~60,000 MWd/MtU were prepared by mixing $UO_2$ powder and oxides of fission product elements, pelleting the powder mixture and sintering it at $1,700^{\circ}C$ under a hydrogen atmosphere. For wet chemical analysis, the simulated spent fuels were dissolved with mixed acid (10 M HCl : 8 M $HNO_3$, 2.5 : 1, v/v) using acid digestion bomb technique. The total amount of uranium and fission products added in the simulated spent fuels were measured using inductively coupled plasma atomic emission spectrometry. Weight change of the simulated fuel during its oxydation was measured by thermogravimetry and then the O/M ratio result was compared to that obtained by wet chemical analysis. Influence of $Mo_{0.4}-Ru_{0.4}-Rh_{0.1}-Pd_{0.1}$, quaternary alloy, on the determination of O/M ratio was investigated.

Experimental analysis of heat exchanger performance produced by laser 3D printing technique (레이저 3D 프린팅 기법으로 제작한 열교환기 성능시험 분석 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.270-276
    • /
    • 2020
  • 3D printing is an additive manufacturing technology that can produce complex shapes in a single process for a range of materials, such as polymers, ceramics, and metals. Recent 3D printing technology has developed to a level that enables the mass-production through an improvement of the printing speed and the continuous development of applicable materials. In this study, 3D printing technology using a laser was applied to manufacture a heat exchanger for an air compressor in a railway vehicle. First, the optimal design of the heat exchanger was carried out by focusing on weight reduction and compactness as a shape suitable for 3D printing. Based on the design derived, heat exchanger prototypes were made of AlSi10Mg alloy material by applying the SLM technique. Moreover, the manufactured prototypes were attached to an existing air compressor, and the heat exchange performance of the compressed air was tested. The test results of the 3D printed prototypes showed a heat exchange performance of approximately 80% and 85% at low and high-pressure, respectively, compared to the existing heat exchanger. From the 𝓔-NTU method results with an external cooling air condition similar to that of the existing heat exchanger, the calculated heat transfer amount of 3D printed parts showed similar performance compared to the existing heat exchanger. As a result, the 3D printed heat exchanger is lightweight with good performance.

Fabrication of $MgB_2$ Sheet by Powder Rolling Method (분말압연 공정에 의한 $MgB_2$ 판재 제조)

  • Chung, K.C.;Jeong, T.J.;Kim, T.H.;Ahn, S.T.;Park, Y.S.;Kim, D.H.;Wang, X.L.;Dou, S.X.
    • Progress in Superconductivity
    • /
    • v.12 no.2
    • /
    • pp.88-92
    • /
    • 2011
  • [ $MgB_2$ ]superconducting sheets have been fabricated using powder roll compaction method. Sheet-type $MgB_2$ bulk samples were successfully fabricated using the pre-reacted $MgB_2$ powders. In this work, $MgB_2$ powders were compacted by two rotating rolls and squeezed out as a form of $MgB_2$ sheets of ~1 mm thickness. The rolling speed of 0.3-0.7 rpm and the gap distance of 0.3-0.8 mm between the two rollers were carefully controlled to get a full compaction of the powders into bulk $MgB_2$ sheets. The densities of $MgB_2$ sheets were 1.98-2.05 g/$cm^3$, which is 75.44-77.99 % of the theoretical value of 2.63 g/$cm^3$. And the density comparison was made compared to those of typical $MgB_2$ bulks from uni-axial pressing and $MgB_2$ wires from Powder-In-Tube processing.

Microstructure and Creep Fracture Characteristics of Dissimilar SMA Welds between Inconel 740H Ni-Based Superalloy and TP316H Austenitic Stainless Steel (Inconel 740H 니켈기 초내열합금과 TP316H 스테인리스강의 이종금속 SMA 용접부의 미세조직과 크리프 파단 특성)

  • Shin, Kyeong-Yong;Lee, Ji-Won;Han, Jung-Min;Lee, Kyong-Woon;Kong, Byeong-Ook;Hong, Hyun-Uk
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.33-40
    • /
    • 2016
  • The microstructures and the creep rupture properties of dissimilar welds between the Ni-based superalloy Inconel 740H and the non-stabilized austenitic stainless steel TP316H have been characterized. The welds were produced by shielded metal arc (SMA) welding process with the AWS A5.11 Class ENiCrFe-3 filler metal, commonly known as Inconel 182 superalloy. Postweld heat treatment at $760^{\circ}C$ for 4 hours was conducted to form ${\gamma}^{\prime}$ strengthener in Inconel 740H. The austenitic weld metal produced by Inconel 182 had a dendritic microstructure, and grew epitaxially from the both sides of Inconel 740H and TP316H base metals. Since both Inconel 740H and TP316H did not undergo any solid-state transformation during welding process, there were no heat-affected-zone (HAZ) sub-regions and the coarsoned grains near the weld interface were limited to a narrow region. The hardness of Inconel 182 weld metal was ~220 Hv. The gradual hardness decrease was detected at HAZ of TP316H, and the TP316H base metal displayed the lowest hardness value (~180 Hv) whilst the Inconel 740H showed the highest hardness value (~400 Hv). Fracture after creep occurred at the center of weld metal, regardless of creep condition. It was found that during creep the cracks initiated and propagated along interdendritic regions and grain boundaries at which Laves particles enriched in Nb, Si and Cr were present. The appropriate design of weld metal was discussed to suppress the creep-induced cracking of the present dissimilar weld.

Mechanical Properties of Precious Metal-Ceramic Alloy Joined by the Laser-Welding and the Soldering Method (레이저 용접과 납착법으로 연결된 귀금속성 금속-도재 합금의 물리적 성질)

  • Oh, Jung-Ran;Lee, Seok-Hyung;Woo, Yi-Hyung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.4
    • /
    • pp.269-279
    • /
    • 2003
  • This study investigated the mechanical properties of precious metal-ceramic alloy joined by the laser-welding and the soldering compared with the parent metal. Twenty-four tensile specimens were cast in precious metal-ceramic alloy and divided into three groups of eight. All specimens in the control group(group 1) were left in the as-cast condition. Group 2 and 3 were the test specimens, which were sectioned at the center. Eight of sectioned specimens were joined by soldering with a propane-oxygen torch, and the remaining specimens were joined by laser-welding. After joining, each joint diameter was measured, and then tested to tensile failure on an Instron machine. Failure loads were recorded, and then fracture stress(ultimate tensile strength), 0.2% yield strength and % elongation calculated. These data for three groups were subjected to a one-way analysis of variance(ANOVA). Neuman-Keuls post hoc test was then used to determine any significant differences between groups. The fracture locations, fracture surfaces were examined by SEM(scanning electron microscope). The results were as follows: 1) The tensile strength and 0.2% yield strength of the soldered group($280.28{\pm}49.35MPa$, $160.24{\pm}26.67MPa$) were significantly less than both the as-cast group($410.99{\pm}13.07MPa$, $217.82{\pm}17.99MPa$) and the laser-welded group($383.56{\pm}59.08MPa$, $217.18{\pm}12.96MPa$). 2) The tensile strength and 0.2% yield strength of the laser-welded group were about each 98%, 99.7% of the as-cast group. There were no statistically significant differences in these two groups(p<0.05). 3) The percentage elongations of the soldered group($3.94{\pm}2.32%$) and the laser-welded group($5.06{\pm}1.08%$) were significantly less than the as-cast group($14.25{\pm}4.05%$) (p<0.05). 4) The fracture of the soldered specimens occurred in the solder material and many porosities were showed at the fracture site. 5) The fracture of the laser-welded specimens occurred also in the welding area, and lack of fusion and a large void was observed at the center of the fracture surface. However, the laser-welded specimens showed a ductile failure mode like the as- cast specimens. The results of this study indicated that the tensile strengths of the laser-welded joints were comparable to those of the as-cast joints and superior to those of the soldered joints.

The Environmental Hazard Assessment of Siting Restricted Industries from Industrial Complex in Rural Area Applied by Chemical Ranking and Scoring System (화학적 등급화기법을 적용한 농공단지 입주제한업종의 환경유해성 평가)

  • Hong, Sang-Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.6
    • /
    • pp.549-560
    • /
    • 2015
  • The priorities of siting restriction was derived from quantification of environmental hazard according to industrial classification based on 'Chemical Ranking and Scoring System(CRS)' which is handling the discharge characteristics of 31 industrial classifications regulated from locating at 'Industrial Complex in Rural Area(ICRA)'. CRS that is utilizing the data of 'Pollutant Release and Transfer Registers(PRTR)' is applied to determine human health risk and ecological risk which are calculated by discharged amount and materials $LC_{50}$ according to water, soil and air media based on industrial classification. From this process, exposure assessment and toxicity assessment for integrating the adverse environmental impact and the mitigation effect of environmental risk according to the development of environmental technologies into establishing the rational landuse management method for the 31 industrial classifications regulated from locating at ICRA was analyzed. From the assessment result of the siting restriction removal at ICRA for 31 industrial classifications, based on 2012 year reference 6 industries that includes Manufacture of Guilt Coloration Surface Processing Steel Materials, Manufacture of Biological Product, Manufacture of Smelting Refining and Alloys of Copper, Dyeing and Finishing of Fibers and Yarns, Manufacture of Other Basic Iron and Steel n.e.c., Rolling Drawing and Extruding of Non-ferrous Metals n.e.c. are calculated as having relatively lower environmental hazards, thus it is judged that the siting restriction mitigation at ICRA is possible for the 6 industrial classifications that are not discharging the specific hazardous water contaminants during manufacturing process.