• Title/Summary/Keyword: 금속체 통신

Search Result 46, Processing Time 0.022 seconds

Design and Fabrication of a Active Resonator Oscillator for Local Oscillator in ISM Band(5.8GHz) (5.8GHz ISM대역 국부 발진기용 능동 공진 발진기 설계 및 제작)

  • 신용환;임영석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.886-893
    • /
    • 2004
  • In this paper, active resonator oscillator using active band pass filter with gain, active resonator with negative resistance using transistor(agilent ATF-34143) is designed and fabricated. Proposed active resonator oscillator for local oscillator in ISM band(5.8GHz) is designed with 5.5 GHz oscillation frequency. Designed active resonator oscillator implemented on the substrate which has the relative dielectric constant of 3.38, the height of 0.508mm, and metal thickness of 0.018mm. Active resonator oscillators using active band pass filter with gain show the oscillation frequency of 5.6GHz with the output power of -2dBm and phase noise of -81dBc/Hz at the offset frequency of 100kHz. Active resonator oscillators active resonator with negative resistance show the oscillation frequency of 5.6, 5.8GHz with the output power of -4dBm and phase noise of -91dBc/Hz at the offset frequency of 100kHz.

Design and Fabrication of a Active Resonator Oscillator using Active Inductor and Active Capacitor with Negative Resistance (부성저항 특성을 갖는 능동 인덕터와 능동 캐패시터를 이용한 능동 공진 발진기 설계 및 제작)

  • 신용환;임영석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1591-1597
    • /
    • 2003
  • In this paper, Active Resonator Oscillator using active inductor and active capacitor with HEMTs(agilent ATF­34143) is designed and fabricated. Active inductor with ­25$\Omega$ and 2.4nH in 5.5GHz frequency band and Active capacitor with ­14$\Omega$ and 0.35pF is designed. Active Resonator Oscillator for LO in ISM band(5.8GHz) is designed with active inductor and active capacitor. Active Resonator Oscillator has been simulated by Agilent ADS 2002C. Active Resonator oscillator implemented on the substrate which has the relative dielectric constant of 3.38, the height of 0.508mm, and metal thickness of 0.018mm. This Active Resonator Oscillator shows the oscillation frequency of 5.68GHz with the output power of ­3.6㏈m and phase noise of ­81㏈c/Hz at the offset frequency of 100KHz.

Design of transistor oscillator for X-band application using a pair of L-shaped monopole slot resonator (한 쌍의 L-형 모노폴 슬롯 공진기를 이용한 X-밴드 트랜지스터 발진기 설계)

  • Lee, Yeong-min;Lee, Young-soon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.107-114
    • /
    • 2021
  • In this paper, a planar transistor oscillator for X-band using a newly proposed L-shaped monopole slot resonator is proposed. For planar design, an L-shaped monopole slot with an open-end is used as a resonator for a transistor oscillator. As a result of the simulated design of the resonator in three stages, a high Q value of 1169.84 and a high insertion loss of 49.934 dB were identified. The results of the final design and manufactured oscillator measurements confirmed that the oscillation output is greater than 7 dBm and has good phase noise characteristics of -58 dBc/Hz at 100 kHz offset. The proposed oscillator is planar and has the advantage of being directly applicable to microwave integrated circuit technology. It also has the advantage of being able to reduce its size as it can only be implemented in microstrip form without additional devices such as metal cavities and tuning screws in 3D structures, as in the case of a DRO (dielectric resonance oscillator).

A Design of the Multiband Small Chip Antenna Using the Branch Structure and Gap Feeding for Mobile Phone (가지 구조와 간극 급전을 사용한 휴대 단말기용 소형 유전체 다중 대역 칩 안테나)

  • Kim, Min-Chan;Kim, Hyung-Hoon;Park, Jong-Il;Kim, Hyeong-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.298-304
    • /
    • 2007
  • In this paper, the antenna which has a multiband operation (GSM850, EGSM, DCS1800, USPCS, W-CDMA) is proposed. This antenna was designed by the commercial software HFSS 3-D EM simulator, and it is organized by using a meander branch structure which has a via and lines on FR-4$(\varepsilon_r=4.4)$ substrate. Especially, it has a gap feeding structure which makes good operation at overall bandwidth. The designed antenna is manufactured by PCB processing, and measured by using a network analyzer and a test chamber. The manufactured antenna with the dimension of 8 mm width, 20 mm height and 3.2 mm thickness is able to applied as an internal antenna for multiband mobile phones.

Embodiment of High Impedance Surface of Meta-Material Characteristic Using Symmetrical AMC Structure and Its SAR Analysis (대칭형 인공자기도체 구조를 이용한 메타물질 특성의 고임피던스 표면 구현 및 SAR 특성 분석)

  • Lee, Seungwoo;Lee, Moung-Hee;Rhee, Seung-Yeop;Kim, Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.744-750
    • /
    • 2013
  • In this paper, we proposed new type of an artificial magnetic conductor(AMC) structure, which has a high impedance surface for realizing the meta-material characteristics. The designed AMC structure set a goal of 3.2GHz, and the reflector, which consists of periodically arrayed AMCs is fabricated and measured. The high impedance improves the reflection coefficient, decreases the system size and interference, and increases the antenna performance. The structure has embodied the high impedance by the thickness and relative permitivity of the dielectric substrate and the design configuration without the metallic via hole which connects the AMC to the GND. The bandwidth is 150% broader than the similar AMC structures. Also, the distance between the antenna and the AMC reflector is decreased by ${\lambda}/10$ as working as the metal(PEC) reflectors. The antenna radiation characteristics are 3dB increased at 10mm away from reflector by measurement. The proposed reflector could be inserted in the portable mobile devices, and the antenna's performance has improved by the reflector. The specific absorption rate is dramatically decreased over 94% because the back radiation of the antenna is shielded.

Millimeter-wave LTCC Front-end Module for Highly Integrated Transceiver (고집적 송수신기를 위한 밀리미터파 LTCC Front-end 모듈)

  • Kim, Bong-Su;Byun, Woo-Jin;Kim, Kwang-Seon;Eun, Ki-Chan;Song, Myung-Sun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.967-975
    • /
    • 2006
  • In this paper, design and implementation of a very compact and cost effective front-end module are presented for IEEE 802.16 FWA(fixed Wireless Access) in the 40 GHz band. A multi-layer LTCC(Low Temperature Co-fred Ceramic) technology with cavity process to achieve excellent electrical performances is used to fabricate the front-end module. The wirebond matching circuit design of switch input/output port and waveguide transition to connect antenna are optimally designed to keep transmission loss low. To reduce the size of the front-end module, the dielectric waveguide filter is developed instead of the metal waveguide filter. The LTCC is composed of 6 layers(with the thickness of a layer of 100 um) having a relative dielectric constant of 7.1. The front-end module is implemented in a volume of $30{\times}7{\times}0.8mm^3$ and shows an overall insertion loss < 5.3 dB, and image rejection value > 49 dB.