• Title/Summary/Keyword: 금속분말 연소

Search Result 41, Processing Time 0.03 seconds

Numerical Simulation on Particle Dispersion in Axisymmetric Sudden-Expansion by Tracer Method (입자추적법에 의한 축대칭 급확대부의 입자확산현상 수치해석)

  • Park, Ounyoung;Yang, Hee Sung;Yim, Chung Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.766-774
    • /
    • 2017
  • Software has been developed for simulating particle dispersion in a circular pipe with sudden-expansion, which models the fuel feeding system of a combustor that uses metal powder like aluminum as fuel. The Lagrangian based discrete tracer point method was employed for a plug flow of particles that satisfies local turbulent velocity fluctuations. A radial velocity component was created to improve the flow turning outwards in the recirculation zone. The particle distribution patterns from both with and without the component were directly compared with the experiments near the reattachment.

  • PDF

Development of molybdenum silicides for hydrogen fueled combustion turbine by mechanical alloying (기계적 합금화에 의한 수소연소 터어빈용 Mo-Si계 금속간화합물의 개발에 관한 연구)

  • 이충효
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.665-672
    • /
    • 1997
  • We applied mechanical alloying process by ball milling to produce molybdenum silicides $MoSi_2$ and $Mo_5Si_3$ using a mixture of elemental molybdenum and silicon powders at room temperature. The intermetallic compound MoSi$_3$ have been obtained by ball milling of $Mo_{33}Si_{67}$ mixture powders for 100 h, which is transformed to single $MoSi_2$ phase by subsequent heat treatment up to $725^{\circ}C$. The grain size of the $MoSi_2$ powders thus obtained was 19 nm, being approximately four times smaller than that of the commercial alloy. The intermetallic compound $MoSi_2$ with grain size of 30 nm have been also obtained by ball milling of $Mo_{62}Si_{38}$ mixture powders for 500 h, which is transformed to single $MoSi_2$ phase by heating up to $1000^{\circ}C$. We believe that the retarded ball milling time for the formation of $MoSi_2$ phase is attributed to its complicated crystal structure and large unit cell. The finer grain size in the ball-milled molybdenum silicides powders is expected to improve room-temperature mechanical properties for high-temperature structural materials.

  • PDF

A Study on the Synthesis of Mullite by Combustion Synthesis Process (연소 합성 공정을 이용한 Mullite의 합성)

  • Lee, Kang-Hyun;Lee, Choe-Hyun;Kim, Taik-Nam;Kim, Jong-Ock;Lim, Dae-Young;Park, Won-Kyu
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.133-138
    • /
    • 1997
  • The conventional process in synthesizing mullite powder required high temperature ($1300^{\circ}C$) and long chemical reaction time. Thus the combustion process was used to synthesize the mullite powder in order to reduce the reaction time and temperature. The mixture of metal nitrate, fine silica, and fuel was used as the redox compounds under various experimental conditions. The combustion fire in hot plate experiment in rich, lean and stoichiometry fuel does not produce mullite. However, the obvious mullite, small amount of alumina and cristobalite was observed in the $500^{\circ}C$ pre-heat treatment furnace experiment. The components such as silica, urea, aluminm nitrate should be stoichiometry in order to make a perfect mullite crystal.

  • PDF

Experimental Investigation on the Vortical Flows in a Single-Entry Swirl Mixing Chamber (단일공급 스월 혼합챔버 내의 와류유동에 대한 실험적 연구)

  • Kim, Hyung-Min;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.445-450
    • /
    • 2011
  • Swirling flows inside a swirl mixing chamber are investigated for simple configuration where swirl is produced by a tangential entry type swirl generator. The flow downstream of the swirl generator has been quantified by measurements two velocity components and their corresponding mean values along axial and radial direction using Particle Image Velocimetry(PIV). The mass flow rate of the tangential entry is increased in order to study their effect on the flow field. From the measurement profile of velocity and vorticity, flow mixing characteristics in a swirl mixing chamber are evaluated.

  • PDF

Differential Thermal Analysis of the Self-propagating High-temperature Synthesis of Ti-Al mixture (Ti-Al의 고온 자전 반응 합성과정의 열시차 분석)

  • Mun, Jong-Tae;Lee, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.5 no.3
    • /
    • pp.345-356
    • /
    • 1995
  • 본 연구에서는 TiAl 금속간 화합물을 자전 고온 반응법을 이용하여 제조시 반응과정을 열시차 분석 방법으로 분석하였다. 합금 조성은 Ti-45at% Al, 53at%Al, 알루미늄 분말 크기, 승온 속도, 성형 밀도 등을 변화시켜 이들이 반응 과정에 미치는 영향을 관찰하였다. 분말이 미세할수록, 승온속도가 느릴수록, 성형 밀도가 낮을수록 반응 점화 온도 및 연소 온도가 감소하였으며, 고상 Ti와 고상 Al간의 반응정도가 증가하는 것이 관찰되었다. 고상 Ti와 고상 Al간의 반응에서 생성되는 것은 XRD 분석 결과 Ti$Al_{3}$상으로 확인되었다. 이에 비하여 반응 점화 온도가 알루미늄의 용융 온도보가 높을 경우에는 생성되는 상이 $Ti_{3}$Al, TiAl상으로 확인되었다. 이러한 상의 생성 원인에 대하여 확산 계수 및 알루미늄의 용해도등의 요인으로 설명하였다.

  • PDF

Preparation of Ta Powder for Capacitor by SHS Process (자전연소합성법에 의한 콘덴서용 탄탈륨 분말 제조)

  • Lee, Seung Young;Lee, Sang Il;Won, Chang Whan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.6
    • /
    • pp.338-343
    • /
    • 2009
  • The purpose of this study is to make the tantalum powder for solid electrolyte capacitor with SHS (self-propagating high-temperature synthesis) process. Raw materials for manufacturing Ta powder were used $Ta_{2}O_{5}$, Mg and NaCl. While progressing SHS process, $Ta_{2}O_{5}$ powder was reduced by Mg powder. The combustion temperature and velocity were easily controled by the varying mole ratio of NaCl, Mg and initial reaction pressure. In the case of only using NaCl as an inorganic agent, the shape is unagglomerated and has high surface area. whereas we were given the powder which has good net structure by the addition of excessive Mg as a diluent.

Mechanical Properties of 316L manufactured by Selective Laser Melting (SLM) 3D printing (Selective Laser Melting (SLM) 방식 3D Printing으로 제조한 스테인레스 316L 기계적 물성 분석)

  • Park, Sun Hong;Jang, Jin Young;Noh, Yong Oh;Bae, Byung Hyun;Rhee, Byong Ho;Eo, Du Rim;Cho, Jung Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.872-876
    • /
    • 2017
  • Laser Based 3D Printing is an recently advance manufacturing technology for making complex shape comopnent such as automobile and aerospace. So in this article, stainless steel 316L was manufactured by Selective Laser Melting (SLM) and Laser Melting Deposition (LMD) method. SLM is an additive manufacturing process that allow for the manufacture of small and complex component by laser melting and solidification of powder in bed using a high intensity laser beam. The results showed that the laser scanning speed and laser power affects the defect, microstructure and the hardness of the components.

  • PDF

A Study on Anti-oxidization Coating for Staged Combustion Cycle Rocket Engines (다단연소 사이클 엔진 적용을 위한 내산화 코팅에 관한 연구)

  • Kim, Young-June;Rhee, Byong-ho;Noh, Yong-Oh;Bae, Byung-Hyun;Hyun, Seong-Yoon;Cho, Hwang-Rae;Bang, Jeong-Suk;Byon, Eung-Sun;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.125-131
    • /
    • 2018
  • Some propellants in a liquid rocket engine are burned in the pre-burner of a staged combustion cycle engine, resulting hot gas drives the turbine. The burned gas passing through the turbine is supplied to the combustor at high temperature and pressure. The form of the gas can be fuel rich or oxidizer rich dependent upon the mixture ratio or the engine scheme. When the cycle works at oxidizer-rich condition, the metal pipes composing the engine can be ignited or even exploded by an impact of very a small particle. In this study, we developed the powder combination and processes for an anti-oxidation coating through the analysis of various coating materials.

Recycling of Hardmetal Tool through Alkali Leaching Process and Fabrication Process of Nano-sized Tungsten Carbide Powder using Self-propagation High-temperature Synthesis (알칼리 침출법을 통한 초경 공구의 재활용 및 자전연소합성법을 통해 제조된 나노급 탄화텅스텐 제조공정 연구)

  • Kang, Hee-Nam;Jeong, Dong Il;Kim, Young Il;Kim, In Yeong;Park, Sang Cheol;Nam, Cheol Woo;Seo, Seok-Jun;Lee, Jin Yeong;Lee, Bin
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.47-55
    • /
    • 2022
  • Tungsten carbide is widely used in carbide tools. However, its production process generates a significant number of end-of-life products and by-products. Therefore, it is necessary to develop efficient recycling methods and investigate the remanufacturing of tungsten carbide using recycled materials. Herein, we have recovered 99.9% of the tungsten in cemented carbide hard scrap as tungsten oxide via an alkali leaching process. Subsequently, using the recovered tungsten oxide as a starting material, tungsten carbide has been produced by employing a self-propagating high-temperature synthesis (SHS) method. SHS is advantageous as it reduces the reaction time and is energy-efficient. Tungsten carbide with a carbon content of 6.18 wt % and a particle size of 116 nm has been successfully synthesized by optimizing the SHS process parameters, pulverization, and mixing. In this study, a series of processes for the high-efficiency recycling and quality improvement of tungsten-based materials have been developed.

A Study on the Synthesis of Titanium Hydride by SHS(Self-propagating High-temperature Synthesis) Method and the Preparation of Titanium Powder (SHS법에 의한 티타늄 수소화물 합성 및 티타늄 분말 제조에 관한 연구)

  • Ha, Ho;Park, Seung-Soo;Lee, Hee-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.263-273
    • /
    • 1994
  • Titanium powder prepared by dehydrogenating the titanium hydride which is synthesized by reacting Ti-sponge (99.67%) with hydrogen using the self-propagating high-temperature synthesis method. In the synthesis of titanium hydride, the particle size of the product was found dependent on the amount of hydrogen incorporated into the titanium such that the particle size of titanium hydride decreased with increasing hydrogen pressure and after-burn time. In the dehydrogenation process, as the dehydrogenation time increase, the particle size of titanium powder increased due to partial melting and sintering of titanium particles.

  • PDF