• Title/Summary/Keyword: 금속분리판

Search Result 106, Processing Time 0.031 seconds

Recovery of Metals from Printed Circuit Board Scraps by Shape Sorting Method (형상분리법에 의한 폐 PCBs로부터 유가금속의 회수연구)

  • Lee, Jae-Chun;Lee, Min-Yong;Shigehisa Endoh;Shin, Hee-Young
    • Resources Recycling
    • /
    • v.5 no.3
    • /
    • pp.37-43
    • /
    • 1996
  • The recovery of metals from printed circuit board(PCBs) scraps was investigated by utilizing a shape sorting method.After all electronic parts mounted on the board were removed. PCBs were pulverized to particles smaller than 1 mm by aswing hammer type impact mill in order to liberate metal components. Metals were separated from nonmetalliccomponents by an inclined vibrating plate (IVP). The metal separation efficiency was measured as a function of vihrationintensity and inclined angle. The maximum efficiency was obtained when IVP was operated at the vibration intensity(Kv)of 1.40 and the inclined angle of 10". The grade of the metal components was recovered from PCBs exceeding 90% byusing IVP.0% by using IVP.

  • PDF

Effect of SUS316L Bipolar Plate Corrosion on Contact Resistance and PEMFC Performance (SUS316L 분리판 부식에 의한 접촉저항 및 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.664-670
    • /
    • 2021
  • Stainless steel was applied as bipolar plate (BP) of polymer electrolyte membrane fuel cell (PEMFC) due to high mechanical strength, electrical conductivity, and good machinability. However, stainless steel was corroded and increased contact resistance resulting PEMFC performance decrease. Although the corrosion resistance could be improved by surface treatment such as noble metal coating, there is a disadvantage of cost increase. The stainless steel corrosion behavior and passive layer influence on PEMFC performance should be studied to improve durability and economics of metal bipolar plate. In this study, SUS316L bipolar plate of 25 cm2 active area was manufactured, and experiments were conducted for corrosion behavior at an anode and cathode. The influence of SUS316L BP corrosion on fuel cell performance was measured using the polarization curve, impedance, and contact resistance. The metal ion concentration in drained water was analyzed during fuel cell operation with SUS316L BP. It was confirmed that the corrosion occurs more severely at the anode than at the cathode for SUS316L BP. The contact resistance was increased due to the passivation of SUS316L during fuel cell operation, and metal ions continuously dissolved even after the passive layer formation.

Development of Conductive-Corrosion Resistive Stainless Steel for PEMFC Bipolar plate (고분자전해질 연료전지용 스테인리스 분리판 고내식/고전도성 표면개질 기술 개발)

  • Han, Jun-Hui;Jeong, Yeon-Su;Jeon, Yu-Taek
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.278-278
    • /
    • 2014
  • 저가형 고전도성/고내식 연료전지용 금속분리판 제작을 위해 다양한 조성 및 온도에서 표면개질을 시행하였다. 본 연구에 의해 제작된 시편의 표면분석 결과 Fe 선택적 용출 및 Cr-rich layer 형성이 이루어졌음을 확인하였으며, 성능 평가 결과 2015 DOE 목표를 만족시키는 것을 확인하였다.

  • PDF

Surface Modification Characteristic of Fuel Cell Bipolar Plate (연료전지 분리판에 미치는 표면 개질 특성)

  • Lee, Jae-Ho;Jeong, Yeon-Su;Jeon, Yu-Taek
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.279-279
    • /
    • 2014
  • 젖음각 80도 이상의 금속분리판 표면을 상압 플라즈마 처리하여 젖음각 10~40도를 갖는 표면으로 개질하였다. 친수성 처리 후 항온항습 상태에서 젖음각 변화를 관찰하였다. 또한 표면 및 부식 특성을 평가하였다.

  • PDF

Coating Durability of Metal Bipolar plate for Low Temperature PEMFC (저온 PEMFC용 금속분리판 코팅의 내구 특성 연구)

  • Kang, Sungjin;Jeon, Yootaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.82.2-82.2
    • /
    • 2010
  • The development of bipolar plate having high efficiency and chemical properties has a major impact on fuel cell applications commercialization. Even though graphite bipolar plate has high electric conductivity and chemical resistance, it has demerits about mass production and brittle property for commercialization. Hence, metallic bipolar plate can be substitute for fuel cell bipolar plate. Although its inadequate corrosion behavior under PEMFC environment lead to a deterioration of membrane by dissolved metal ions, metallic bipolar plate for PEMFC is more suitable for automotive and residential power generation system because of its high mechanical strength, low gas permeability and applicability to mass production. Therefore, several types of coating has been applied to prevent corrosion and oxide film growth and to achieve more high durability. This work presents durability of coated metal bipolar plate for low temperature PEMFC which made for fuel cell vehicle. This results showed surface treatment increase long-term durability, even electric conductivity and corrosion resistance.

  • PDF