Proceedings of the Korean Vacuum Society Conference
/
2014.02a
/
pp.133.1-133.1
/
2014
이 발표에서 우리는 수백 나노미터 크기인 두 개의 나노 금속 원반 또는 나노 블록이 백 나노미터 이하의 간격으로 결합된 초미세 이중 금속 플라즈몬 광공진기를 제안하고 그 응용을 살펴본다. 원반구조 경우, 반지름이 476 nm인 나노원반 두 개가 100 nm 두께의 유전체 원반의 양쪽에 위치하여 1550 nm 공진파장을 가진 표면 플라즈몬 whispering-gallery-mode (WGM)을 유전체 내에 형성한다. 유전체의 두께를 일정하게 유지할 경우, WGM의 공진파장은 원반의 반지름에 따라 줄어든다. 반면, 반지름이 일정할 때에는 두 금속 원반 사이의 유전체 두께가 줄어듦에 따라 두 금속 원반 사이에 작용하는 표면 플라즈몬의 결합이 강해져서 공진파장이 길어진다. 따라서, 일반적으로 공진기의 크기가 줄어듦에 따라 공진파장이 짧아지는 것과 달리, 제안된 원반구조에서 발생하는 WGM는 원반의 반지름과 유전체의 두께를 함께 줄여도 공진파장이 동일하게 유지되는 차별화된 특성을 가지고 있다. 최종적으로 같은 공진파장을 가지는 WGM를 반지름 88 m, 유전체 두께 10 nm의 공진기에서도 여기시킬 수 있음으로, 모드부피(V)를 1/160으로 줄일 수 있다. 이에 비해, 공진모드의 품위값(Q)은 증가된 금속의 흡수손실에 의해 1/3정도 줄어듦으로써, 공진기와 물질의 상호작용 정도를 보여주는 Q/V값은 크기가 줄어든 공진기에서 오히려 50배 가량 증가함을 확인할 수 있다. 이 같은 초미세 플라즈몬 공진기는 매우 작은 굴절율 센서로서 응용을 가지고 있으며, 1160 nm/(단위 굴절율 변화)의 높은 민감도를 보인다. 한편, $200{\times}150{\times}100nm3$의 크기를 가진 두 개의 금속 나노블록이 10 nm의 공기 간격을 가지고 결합된 나노 공진기는, 공기 간격 내에 강하게 집적된 838 nm의 공진파장을 가진 플라즈몬 공진기 모드를 여기시킨다. 제안된 공진모드는 공기간격이 줄어듦에 따라 공진파장이 급격하게 증가하는 특성을 가지므로 옹스토롬 정도의 분해능을 가진 두께 변화 센서로 응용할 수 있다. 예를 들어, 공기간격 2 nm에서는 1A 두께 변화에 대해 공진파장 변화는 약 40 nm로 매우 민감하게 변화한다.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2007.11a
/
pp.353-353
/
2007
탄소나노튜브(CNT)의 tip 부분에 존재하는 금속 촉매 입자들은 불순물로써 나노전자소자에 응용하는데 좋지 않은 영향을 미칠 수 있다. 또한, 바이오센서에서 target 바이오 물질과 반응하는 물질을 CNT에 고정시키기 위해서는 CNT-tip을 개방시키는 것이 중요하다. 본 연구에서는 성장된 CNT의 tip부분에 존재하는 금속 촉매 입자의 제거와 CNT-tip을 개방하기 위해 $HNO_3$의 농도 (20, 40, 60)와 etching 시간 (5, 10, 15, 20, 25 min)에 따라 최적의 조건을 찾는 실험을 하였다.
Proceedings of the Korean Vacuum Society Conference
/
2013.08a
/
pp.210.1-210.1
/
2013
ZnO는 태양전지의 투명전극 및 윈도우 물질로 그 동안 광범위하게 사용되어 왔다. 하지만 태양광의 효율 증가를 위하여서는 가시광 영역뿐만 아니라 자외선 및 적외선 영역을 이용할 필요가 있다. 또한 금속 산화물 반도체 나노 입자는 크기를 조절하여 흡수하는 태양광의 파장 영역을 조절할 수 있고 이를 이용하여 이종구조를 사지는 고효율의 태양전지를 구현할 수 있다. 본 연구에서는 3.4 eV의 에너지 밴드갭을 가지는 ZnO박막내에 밴드갭을 조절 할 수 있는 금속 산화물 나노입자를 삽입하여 광학적, 전기적 특성을 연구하였다. ZnO 박막을 증착하기 전 유리 및 사파이어 기판에 스퍼터를 사용하여 Pt금속전극을 형성한 이후, ZnO 박막을 $1{\times}10^{-10}$ Torr의 기본 진공도를 유지하는 초고진공 스퍼터를 사용하여 100 nm 두께로 증착 하였다. 금속 산화물 나노 입자를 제작 하기 위하여, ZnO 박막에 열증착 장비(thermal evaporator)를 사용하여 In 나노 입자를 10 nm 이하의 크기로 제작 하였다. 그 상부에 초고진공 스퍼터 와 열증착 장비를 사용하여 ZnO 박막 및 In 나노 입자를 순차적으로 증착하여 수백 nm 두께의 ZnO 박막을 제작한다. ZnO 박막 내부에 형성된 In 양자점은 ZnO 증착공정 중에 산화되어 $In_2O_3$ 의 산화물 나노 입자로 형성되며, 내부의 구조는 투과전자 현미경을 사용하여 확인 하였다. 제작된 금속 산화물 나노입자가 포함된 ZnO 박막의 광학적 특성을 photoluminescence, UV-Vis spectroscopy, ellipsometry를 통하여 확인 하였으며, solar simulator와 전류-전압 특정 장비를 사용하여 전기적 특성을 분석 하였다.
Kang, Mun Hee;Park, Sol;Lee, Sang-Woo;Kim, Hyun-A;Lee, Byung-Tae;Eom, Ig-Chun;Kim, Soon-Oh
Journal of Korean Society of Environmental Engineers
/
v.37
no.4
/
pp.218-227
/
2015
A prerequisite for precise quantification of nanomaterials contained in environmental samples is to prepare suitable preservation conditions of samples. This study was initiated to suggest preservation conditions of aqueous samples for analyses of metal nanomaterials. Variation in the size of silver nanomaterial (cit-AgNP) was observed according to change in various conditions, such as pH, electrolyte concentration, temperature, nanomaterial concentration, and time. Aggregation of AgNP was characterized for each environmental condition, and finally proper preservation conditions of samples were proposed based on experimental results on AgNP aggregation. In addition, the preservation period of sample was computed by the doublet time of AgNP. The results indicate that the aggregation rate of cit-AgNP was close to 0 at the conditions of pH of ${\geq}7$, electrolyte ($Ca(NO_3)_2$) concentration of ${\leq}3mM$, temperature of $4^{\circ}C$, and cit-AgNP concentration of ${\leq}2mg/L$. Furthermore, the experimental results on doublet time of cit-AgNP suggest that maximum preservation period was evaluated to be 15.79~17.53 days when the concentration of 100 nm cit-AgNP is assumed to be $1{\mu}g/L$ which is considered as an environmentally-relevant concentration of engineered nanomaterials. Our results suggest that samples should be preserved at $4^{\circ}C$ and analyzed within 2 weeks.
Proceedings of the Materials Research Society of Korea Conference
/
2010.05a
/
pp.23.1-23.1
/
2010
Alkanethiol (CH3(CH2)nSH) 자기 조립 박막은 금, 은, 팔라듐 그리고 구리와 같은 금속 물질과 결합하여 산화 방지 보호막, 생화학적 멤브레인 그리고 케미컬 센서로 널리 이용되었다. 전도성을 가진 많은 금속 분말 중에서, 구리는 뛰어난 열, 전기 전도성과 풍부한 양으로 다른 귀금속에 비교하여 경제성까지 갖춘 물질이다. 그러나 이러한 구리 나노 분말은 대기에 노출된 구리 분말이 쉽게 산화된다는 결정적인 단점 때문에 그동안 널리 이용되지 못하였다. 이러한 구리의 단점을 극복하고 뛰어난 전도성의 특징을 이용하고자, Langmuir-Blodgett (LB), layer by layer (LbL), electrophoretic deposition (EPD), self-assembled monolayer (SAM)과 같은 구리 나노 분말 위에 유기 박막을 형성하고자 하는 많은 방법이 시도되어왔다. 이러한 방법들 대부분은 습식 방법으로 진행되었으며, 약 2-nm 두께의 SAM 구조를 형성할 수 있음이 많은 연구를 통하여 확인되었다. 그러나 습식 기반의 SAM 구조는 단지 수일 동안만 유효하며, 이는 코팅을 수행하면서 점차 떨어지는 source solvent의 순도와 적합하지 않은 코팅 조건, 그리고 이러한 원인으로 형성된 부실한 막질 구조 때문으로 추측된다. 게다가 이러한 습식 기반 공정은 코팅 막의 두께 조절과 코팅 시 solvent의 순도를 일정하게 유지하는 것이 매우 복잡하고 어려운 작업으로 알려져 왔다. 본 실험에서는 고 진공 챔버 (< $4.0{\times}10-6$ torr) 시스템을 이용하여 습식 기반 공정의 문제점을 극복하고 구리 나노 분말의 산화를 막기 위한 실험을 진행하였다. 1-octanethiol (CH3(CH2)7SH)은 중간 길이의 hydrocarbon (n=7) 구조를 가진 특징 때문에 코팅 물질로 사용되었다. 게다가, alkanethiol 족 특유의 물질인 황(sulfur)은 구리와 결합하여 산화방지 보호막의 역할을 수행할 수 있다. 저 진공 조건에서는 10-nm의 multilayer가 일괄적으로 코팅됨을 확인할 수 있었다. 본 실험에서는 약 10-nm 두께의 자기 조립 박막(self assembled monolayers: SAMs)이 고 진공 조건에서 구리 나노 분말 표면 위에 코팅 조건의 변경을 통해서 5-nm에서 10-nm 두께의 1-octanethiol SAMs 구조를 얻어낼 수 있었다. 이는 고 진공 조건에서 1-octanethiol SAMs의 코팅 두께를 조절함으로 다양한 크기의 분말에 코팅 물질로 쓰일 수 있음을 알 수 있다.
Proceedings of the Korean Fiber Society Conference
/
2003.10b
/
pp.201-202
/
2003
탄소나노튜브는 역학적 물성이 뛰어날 뿐만 아니라 전기적 특성도 우수하여 현재 매우 많은 연구와 응용개발이 시도되고 있다 일반적으로 전기전도성 고분자 복합체를 얻기 위한 방법으로 카본블랙이나 전도성 섬유, 금속섬유, 전도성 분말 등을 고분자에 혼입하는 방법을 주로 이용하지만, 복합체 내에서 나노구조 형성이 가능한 탄소나노튜브를 이용하면 나노물질의 특성상 매우 유리한 점이 많다. 예를 들면, 우수한 전기특성, 낮은 임계농도, 우수한 역학적 성질 둥이다. (중략)
Kim, Joo-Young;Cho, Kyu-Man;Lee, Taek-Sung;Kim, Won-Mok;Lee, Kyeong-Seok
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2008.06a
/
pp.77-77
/
2008
금(Au)이나 은(Ag)과 같은 귀금속 물질로 형성된 금속 나노 구조체는 표면 플라즈몬 공진(Surface Plasmon Resonance, SPR) 현상과 이의 국부 환경(local environment) 변화에 대해 민감한 의존성으로 인하여 생화학적 센서로의 응용이 주목 받고 있다. 표면 플라즈몬 공진은 광 흡수와 광 산란을 수반하는데, 두 가지 특성 모두 분광학적 신호검출방식으로 센서에 응용가능하다. 이 중 광 산란을 이용하는 방식은 광원의 배경잡음 효과가 배제되기 때문에 단일 입자 검출에 유리하다. 광 흡수와 광 산란 특성은 금속 나노 구조체는 크기, 형상, 주변 매질, 물질의 선택에 따라서 영향을 받는다. 본 연구에서는 금 나노 디스크(nanodisc)의 형상에 따라서 여기 되는 표면 플라즈몬이 광 흡수와 광 산란 특성에 미치는 영향을 가시광과 근적외선 영역에 대해서 불연속 쌍극자 근사법(Discrete Dipole Approximation, DDA)을 이용하여 전사모사(simulation) 하였다. 금 나노 디스크의 형상과 플라즈몬 특성 간의 관계는 공명 파장과 산란 양자 거둠율(scattering quantum yield, $\eta$)을 이용하여 분석하였고, 센서로서의 응용을 가늠하기 위해 주변 매질의 굴절률을 조절하여 그에 따른 민감도(sensitivity )를 비교하였다. 나노 디스크의 모양이 판상에 가까워질수록 공명 파장은 적색 편이하였고 광 산란 효율과 민감도는 증가하는 현상이 나타났다. 또한, 산란 양자 거둠율은 증가하다가 완만하게 감소하는 경향이 나타났다.
Proceedings of the Korean Vacuum Society Conference
/
2013.02a
/
pp.604-604
/
2013
차세대 반도체 분야인 스핀트로닉스 소자의 필수적인 물질인 강자성-반도체 하이브리드 물질인 Dilute magnetic semiconductor (DMS)에 관한 연구가 최근 많은 관심을 가지고 있다. 그중에서 넓은 에너지 밴드 갭 에너지(3.37 eV)를 가지고 있고 상온에서 엑시톤 결합 에너지가 ~60 mV로 광전자 소자, 전계 디스플레이 에 응용이 가능한 물질인 ZnO는 최근에 전이금속을 도핑하여 상온에서 강자성 특성을 나타내어 활발한 연구가 이루어지고 있다. 그러나, 이 물질에 대한 특성과 자성의 원인 규명에 관한 연구는 논란이 되고 있다. 본 연구에서는 Mn이 도핑된 ZnO 나노 입자를 만들고, Mn 물질의 도핑 농도에 따른 ZnO 나노 입자의 구조, 크기 및 자기 구조를 측정하여 구조와 자성의 상관관계에 관한 연구하였다. ZnxMn1-xO 나노 입자는 화학적 졸-겔(sol-gel) 방법을 이용하여 준비하였다. ZnxMn1-xO 나노 입자의 크기 및 격자 구조적 특징은 XRD (X-ray diffraction)와 TEM (Transmission Electron Microscope), SEM (Scanning Electron Microscope), SANS (Small Angle Neutron Scattering)를 이용하여 측정하였고 물질의 자기적 특징은 SQUID를 이용하여 조사하였다. Mn 도핑이 증가함에 따라 격자간격이 커지고 나노 입자의 크기는 감소하였으며, Zn와 Mn의 성장 시, 비율이 9:1의 경우에 상온에서 강자성 특성이 나타남을 보았다. 그 이상의 Mn 도핑 비율에서는 상자성 특성이 나타남을 보았다. 본 연구를 통하여 스핀트로닉스 소자 응용을 위한 ZnO 나노 입자에 최적의 Mn 도핑 농도를 제시하고 나노 입자의 자기 특성 형성의 원인 및 모델을 제시하였다.
Proceedings of the Korean Vacuum Society Conference
/
2013.02a
/
pp.594-594
/
2013
금속이 첨가된 타이타니아 물질은 밴드갭이 감소해 자외선보다 파장이 긴 가시광 영역에서도 광촉매 반응을 나타낸다. 바나듐이 도핑된 타이타니아를 sol-gel법으로 제조하여 가시광과 자외선 환경에서 methylene blue의 감소량을 측정해 촉매특성평가를 하였다. 기존 상용 타이타니아(Degussa, P25)를 대조군으로 특성을 평가한 결과 가시광 영역에서 초기 반응 속도가 3배 이상 빨라짐을 확인하였다. UV-vis를 사용해 optical band gap을 측정한 결과 밴드갭이 감소함을 확인할 수 있었다. 도핑이 끝난 타이타니아 전구체 물질을 AAO template 위에 코팅한 후 sodium hydroxide로 template을 제거 후 나노그물을 제작하였다.
영화 <지.아이. 조(G.I. Joe)-전쟁의 서막>에서는 금속성 물질과 에펠탑을 갉아먹는 나노무기가 등장한다. 나노기술이 접목된 특수한 초소형 기계 수천 개로 이뤄진 이 무기가 가동되면 쇳조각을 비롯해 무엇이든 무서운 속도로 분해해 먹어치운다. 또 우리에게 잘 알려진 600만 불의 사나이와 소머즈, 로버캅도 팔과 다리를 개조하거나 몸 안에 보조기나 칩을 넣어 초능력을 발휘한다. 탱크를 들어 올리고, 헬기를 잡아서 떨어뜨린다. 아마 이들이 전쟁에 투입된다면 특수 부대원이라도 싸움이 쉽지는 않을 것이다. 그렇다면 실제로 이런 '초능력 병사'를 만들 수는 없을까. 현재 나노무기의 수준은 어느 정도일까.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.