• Title/Summary/Keyword: 금속광물자원

Search Result 187, Processing Time 0.024 seconds

Au-Ag-bearing Ore Mineralization at the Geochang Hydrothermal Vein Deposit (거창 열수 맥상광상의 함 금-은 광화작용)

  • Hong, Seok Jin;Lee, Sunjin;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.171-181
    • /
    • 2022
  • The Geochang Au-Ag deposit is located within the Yeongnam Massif. Within the area a number of hydrothermal quartz and calcite veins were formed by narrow open-space filling of parallel and subparallel fractures in the granitic gneiss and/or gneissic granite. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz vein; stage II, barren calcite vein) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite with minor pyrrhotite and arsenopyrite; middle, characterized by introduction of electrum and base-metal sulfides with minor sulfosalts; late, marked by hematite with base-metal sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥380℃ ) and later lower temperatures (≤210℃ ) from H2O-CO2-NaCl fluids with salinities between 7.0 to 0.7 equiv. wt. % NaCl of Geochang hydrothermal system. The relationship between salinity and homogenization temperature indicates a complex history of boiling, fluid unmixing (CO2 effervescence), cooling and dilution via influx of cooler, more dilute meteoric waters over the temperature range ≥380℃ to ≤210℃. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Geochang hydrothermal system with increasing paragenetic time. The Geochang deposit may represents a mesothermal gold-silver deposit.

Cation Exchange Capacities, Swelling, and Solubility of Clay Minerals in Acidic Solutions : A Literature Review

  • Park, Won Choon
    • Economic and Environmental Geology
    • /
    • v.12 no.1
    • /
    • pp.41-49
    • /
    • 1979
  • A literature review is made on the physical and chemical characteristics of clay minerals in acidic solutions from the mineralogical and hydrometallurgical viewpoints. Some of the important characteristics of clays are their ability to cation exchange, swelling, and incongruent dissolution in acidic solutions. Various clay minerals can take up metallic ions from solution via cation exchange mechanism. Generally, cation exchange capacity increases in the following order : kaolinite, halloysite, illite, vermiculite, and montmorillonite. In acidic solutions, the cation uptake such as copper by clay minerals is strongly inhibited by hydrogen and aluminum ions and thus is not economically significant factor for recovery of metals such as uranium and copper. In acidic solutions, the cation uptake is substial. Swelling is minimal at lower pH, possibly due to lattice collapse. Swelling may be controllable with montmorillonite type clays by exchanging interlayer sodium with lithium and/or hydroxylated aluminum species. The effect of add on clay minerals are : 1. Division of aggregates into smaller plates with increase in surface area and porosity. 2. Clay-acid reactions occur in the following order: (i) $H^+$ replacement of interlayer cations, (ii) removal of octahedral cations, such as Al, Fe, and Mg, and (iii) removal of tetrahedral Al ions. Acid attack initiates, around the edges of the clay particles and continued inward, leaving hydrated silica gel residue around the edges. 3. Reaction rates of (ii) and (iii) are pseudo-1st order and proportional to acid concentration. Rate doubles for every temperature increment of $10^{\circ}C$. Implications in in-situ leaching of copper or uranium with acid are : 1. Over the life span of the operation for a year or more, clays attacked by acid will leave silica gel. If such gel covers the surface of valuable mineral surfaces being leached, recovery could be substantially delayed. 2. For a copper deposit containing 0.5% each of clay minerals and recoverable copper, the added cost due to clay-acid reaction is about 1.5c/lb of copper (or 0.93 lbs of $H_2SO_4/1b$ of copper). This acid consumption by clay may be a factor for economic evaluation of in-situ leaching of an oxide copper deposit.

  • PDF

Feasibility Study on Technology Status Level and Location Conditions of Urban Mining Industry in Abandoned Mine Area (도시광산 산업의 현황수준 및 폐광지역 입지여건 타당성 연구)

  • Ko, Ilwon;Park, Joo-Hyun;Park, Jae-Hyun;Yang, In-Jae;Lee, Seung-Ae;Kim, Dae-Yeop;Kim, Su-Ro
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.553-563
    • /
    • 2018
  • In this study, the location conditions and optimal technologies required for creating urban municipalities that can utilize the space in an abandoned mine area, where there is no infrastructure related to recycling wastes and valuable metals, are investigated. The urban mining industry deals with mineral resources through the processing of high value-added industrial by-products and wastes, and it is a useful linkage industry for the development of mineral resources and prevention of mining hazards. Urban mining technologies targeted at the abandoned mine area constitute screening, extraction, and smelting for recycling waste products. By analyzing the technologies available, an industrial network can be developed for recycling waste batteries and catalysts, which are promising raw materials. It is also important to establish an appropriate location for related industries that can generate value-added resources, rather than the resource supply and demand conditions seen in general urban mines. In order to overcome the accessibility and infrastructure limitations, the economic foundation of the abandoned mine area should consider the linkage of raw material supply, key technologies for recycling useful mineral resources that are derived from urban mines, spatial and site conditions, and industrial characteristics.

The Mineralogical and Chemical Characteristics of Slag from Kazakhstan and Leaching of Cu and Fe (카자흐스탄 구리 슬래그의 광물학적, 화학적 특성 및 구리와 철의 용출 특성)

  • Kim, Bong-Ju;Cho, Kang-Hee;Shin, Seung-Han;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.17-28
    • /
    • 2015
  • In order to study the mineralogical and chemical characteristics of copper slag, optical microscopy, SEM/EDS, EPMA, AAS and XRD analyses were carried out. In addition, sulfuric acid leaching experiments were performed to investigate the potential of the slag as a copper resource. It was confirmed that fayalite, chromite, bornite and chalcopyrite were contained in the slag. The slag mainly consisted of acicular fayalite and skeletal lath -euhedral chromite crystals. Also a very large amount of bornite and chalcopyrite grains were contained in the slag. The content of Fe and Cu in the slag was 18.37% and 0.93%, respectively. As a result of sulfuric acid leaching experiments, the leaching rates of Cu and Fe were increased through decreasing the slag particle size, increasing the sulfuric acid concentration and the leaching temperature. The maximum efficiency of Cu and Fe leaching were obtained under the conditions of particle size of 32 mesh, sulfuric acid concentration of 2.0 M, and leaching temperature of $60^{\circ}C$. Accordingly, it is expected that the slag could be available as a potential and alternative resource of metallic copper.

Spatio-Temporal Variation of Polymetallic Mineralization in the Wooseok Deposit (우석광상 다금속 광화작용의 시공간적 특성변화)

  • Im, Heonkyung;Shin, Dongbok;Jeong, Junyeong;Lee, Moontaek
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.493-507
    • /
    • 2018
  • The Wooseok deposit in Jecheon belongs to the Hwanggangri Mineralized Distict of the northeastern Ogcheon Metamorphic Belt. Its geology consists mostly of limestone of the Choseon Supergroup and the Cretaceous Muamsa granite intruded at the eastern area of the deposit. The deposit shows vertical occurrence of skarn and hydrothermal vein ores with W-Mo-Fe and Cu-Pb-Zn mineralization and skarn is developed only at lower levels of the deposit. Skarn minerals are replaced or cut by ore minerals in paragenetic sequence of magnetite-hematite, molybdenite-scheelite-wollframite, and higher abundances of pyrrhotite-chalcopyrite-pyrite-sphalerite-galena. Garnet has chemical compositions of $Ad_{65.9-97.8}Gr_{0.3-32.0}Pyr_{0.9-3.0}$, corresponding to andradite series, and pyroxene compositions are $Hd_{4.5-49.7}Di_{42.3-93.9}Jo_{0.5-7.9}$, prevailing in diopside compositions, both of which suggest oxidized conditions of skarnization. On the FeS-MnS-CdS ternary diagram, FeS contents of sphalerite in vein ores decrease with increasing MnS contents from bottom to top levels, possibly relating to W mineralization in deep and Pb-Zn mineralization in shallow level. Sulfur isotope values of sulfide minerals range from 5.1 to 6.8‰, reflecting magmatic sulfur affected by host rocks. W-Mo skarn and Pb-Zn vein mineralization in the Wooseok deposit were established by spatio-temporal variation of decreasing temperature and oxygen fugacity with increasing sulfur fugacity from bottom to top levels.

Occurrence and Mineralogical Properties of Green-Blue Inorganic Pigments in Korea (국내 녹색-청색계열 무기안료의 산출과 광물학적 특성)

  • Jeong, Gi Young;Cho, Hyen Goo;Do, Jin Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.33-46
    • /
    • 2018
  • Traditional inorganic pigments applied to dancheong, buddhist painting, and wall painting were produced from natural minerals which were later replaced by synthetic pigments, resulting in the loss of the recipe to prepare mineral pigments. This study examined the domestic occurrence and mineralogical characteristics of green and blue mineral pigments required for the conservation of cultural heritage. Cuprous green-blue mineral pigments were found as the weathering products of waste dumps and ores of abandoned Cu-Pb-Zn sulfide mines. Mineralogical analyses using X-ray diffraction and scanning electron microscopy identified diverse hydrous copper sulfate pigments of green (brochantite and devilline) and blue color (linarite, bechererite, and schulenbergite) with minor green pigments of antlerite and atacamite commonly associated with cerussite, smithsonite, anglesite, and cuprite. Noerok, a green silicate pigment, replaced the fractured basalt lava. Celadonite was responsible for the green color of Noerok, closely associated with opal in varying ratio. Glauconite, green silicate pigment, was identified in the Yellow Sea sediments. Malachite and azurite, the most important green and blue pigments of Korean cultural heritage, were not identified in this study.

국제(國際) 유가(油價) 변동(變動)과 한국(韓國) 수출(輸出) 산업(産業)

  • Kim, Il-Jung;Kim, Jung-Gwan
    • Environmental and Resource Economics Review
    • /
    • v.4 no.2
    • /
    • pp.197-221
    • /
    • 1995
  • 본 논문에서는 산업연관 분석모형을 이용하여 1980년대 수출산업에서의 유가변화의 산업별 파급효과를 분석하고, 1990년대 유가 파급효과를 추정하여 보았으며, 1980년대 산업별 물가상승 요인을 계측하여 1970년대 물가상승요인과 비교분석하여 보았다. 1980년대 상반기의 유가 파급효과가 큰 산업은 석유제품과 에너지 다소비 품종인 화학, 비금속 광물, 전기가스수도, 철강, 금속 등으로 나타났으며 대부분의 산업은 유가인상율의 5% 내외의 인상효과를 나타내었다. 유가 인하기였던 1980년대 하반기에도 인하효과는 산업별로 상반기와 비교할 때 큰 차이는 없었으나, 기계, 전기, 전자통신, 자동차 등 주요 수출산업의 가격인하 효과는 그다지 크지 않은 것으로 분석되었다. 저물가 시대였던 1980년대의 주요 물가변화 요인으로는 임금 등 부가가치 및 원유가격의 변화로서 1970년대와 큰 차이가 없었으나, 중간재 수입가격, 수입계수 및 수업률 변화의 물가변화 기여도는 아주 작아서 1970년대와는 다른 양상을 보였다. 한편 1990년대의 유가파급효과 추정을 위한 모의실험 결과를 보면, 1980년대와 마찬가지로 석유관련 제품의 가격인상 효과가 두드러지겠지만, 1970년대와 1980년대에 비해서 유가파급효과는 상대적으로 낮을 것으로 추정되어 수출산업의 가격경쟁력은 임금, 기타 원자재 가격 등 여타 물가인상 요인에 더 영향을 받을 것으로 예상된다.

  • PDF

Effect of Cu(II) and Al(III) on the Extraction and Separation of Pt(IV) and Pd(II) from Concentrated Hydrochloric Acid Solution with Alamine336 (진한 염산용액에서 구리(II)와 알루미늄(III)이 Alamine336에 의한 백금(IV)과 팔라듐(II)의 추출 및 분리에 미치는 영향)

  • Lee, Manseung;Ahn, Jonggwan;Sun, Panpan
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.148-153
    • /
    • 2010
  • The effects of Cu(II) and Al(III) on the extraction and separation of Pt(IV) and Pd(II) have been investigated in a mixed chloride solution using Alamine336 as the extractant. In the HCl concentration range of 1 to 5 M, more than 99% of Pt and Pd could be extracted by Alamine336 from all of the mixed chloride solutions investigated in this study. Lower HCl concentration led to a higher separation factor between Pd and Pt when Alamine336 concentration was constant. Extraction percentage of Cu increased with the increase of HCl concentration, while that of Al was nearly constant at 33% in our experimental range. The optimum conditions to extract Pt and Pd from Cu or Al and the separation factor under these conditions were obtained.

Genetic Environments of Au-Ag-bearing Gasado Hydrothermal Vein Deposit (함 금-은 가사도 열수 맥상광상의 성인)

  • Ko, Youngjin;Kim, Chang Seong;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.53-61
    • /
    • 2022
  • The Gasado Au-Ag deposit is located within the south-western margin of the Hanam-Jindo basin. The geology of the Gasado is composed of the late Cretaceous volcaniclastic sedimentary rocks and acidic or intermediate igneous rocks. Within the deposit area, there are a number of hydrothermal quartz and calcite veins, formed by narrow open space filling along subparallel fractures in the late Cretaceous volcaniclastic sedimentary rock. Vein mineralization at the Gasado is characterized by several textural varieties such as chalcedony, drusy, comb, bladed, crustiform and colloform. The textures have been used as exploring indicators of the epithermal deposit. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz veins; stage II, barren carbonate veins) considering major tectonic fracturing event. Stage I, at which the precipitation of Au-Ag bearing minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite and pyrrhotite with minor chalcopyrite, sphalerite and electrum; middle, characterized by introduction of electrum and base-metal sulfides with minor argentite; late, marked by argentite and native silver. Au-Ag-bearing mineralization at the Gasado deposit occurred under the condition between initial high temperatures (≥290℃) and later lower temperatures (≤130℃). Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur (≈10-10.1 to ≤10-18.5atm) by evolution of the Gasado hydrothermal system with increasing paragenetic time. The Gasado deposit may represents an epithermal gold-silver deposit which was formed near paleo-surface.

A Review of Magnetic Exploration in Korea (한국의 자력탐사)

  • Park, Yeong-Sue;Lim, Mu-Taek;Rim, Hyoung-Rae;Koo, Sung-Bon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.13-20
    • /
    • 2008
  • Magnetic method is rapid, cheap and simple geophysical exploration technique, and has wide range of applications such as resources prospecting, geological structure investigation and even geotechnical and environmental problems. Documents during Japanese occupation says that magnetic method was used for exploring metallic ore deposits and hot spring, and that a geomagnetic observatory was operated. From mid 1950's, magnetic explorations for natural resources such as metallic ore, uranium, coal, and groundwater were intensively executed for industrialization. Magnetic survey techniques were rapidly advanced during 1970's and 1980's with improvements of instruments, growth of geophysical manpower, and availability of computers. Decline of mining industry since mid 1980's moved the exploration objects from traditional resources to new ones such as groundwater and geothermal resources. Recently appeared applications such as natural hazard assessment, and engineering and environmental studies increased the magnetic method's utility in the realm of exploration.

  • PDF