• Title/Summary/Keyword: 글리콜첨가분해

Search Result 19, Processing Time 0.022 seconds

Behavior of Intrinsic Viscosity and Moisture Content of Antistatic Polyethyleneterephthalate by Thermal Stabilizer (열안정제에 의한 제전성 폴리에틸렌테레프탈레이트의 고유점도 및 수분율의 거동 변화)

  • Kim, Moon-Chan;Lee, Cheal-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.707-710
    • /
    • 1999
  • Moisture content and intrinsic viscosity of antistatic polyethyleneterephthalate(PET) depending on the thermal stabilizer content was studied. The terminal moisture content of antistatic PET was a function of drying temperature rather than drying time. Intrinsic viscosity drop of antistatic PET after melt spinning increased with increasing moisture content of it. After melt spinning, intrinsic viscosity of antistatic PET was decreased due to the thermal degradation of polyoxyalkyleneglycol(POAG) component of antistatic agent. Triphenylphosphate(TPP) was more effective as a thermal stabilizer than trimethylphosphate(TMP). A little intrinsic viscosity drop after melt spinning was found in PET containing 300 ppm of TPP as a thermal stabilizer.

  • PDF

BCNU Release Behaviour from BCNU/PLGA Wafer Prepared by Vacuum Drying Method (진공 건조법에 의해 제조된 BCNU/PLGA웨이퍼의 BCNU 방출거동)

  • Park, Jung-Soo;Shin, Joon-Hyun;Lee, Doo-Hee;Rhee, John-M.;Kim, Moon-Suk;Lee, Hai-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.201-205
    • /
    • 2007
  • Biodegradable polymers such as polylactide, polyglycolide and poly (lactide- co-glycolide) (PLGA) have been extensively investigated because of easily controlled drug release rate, completely degradable materials without the toxic by-product, and good biocompatibility. But, according to the bulk erosion property of PLGA in vitro test, it had the disadvantage that first-order release reduced releasing amount slowly after excessive initial burst. In this study we used PLGA powder obtained through recrystallization to revise bulk erosion property of PLGA. The PLGA used in this study was prepared by vacuum drying method and to estimate release profiles of BCNU loaded PLGA wafer. We also evaluated the release profile of drug with the water soluble additive. It was found that the drug loaded PLGA recrystallized by vacuum drying method exhibited the initial burst and the constant rate of drug release compared to that prepared by a conventional method.

Studies on the Stability of Multivitamin Solutions (종합비타민 액제의 안정성에 대한 연구)

  • Park, Hong-Koo
    • Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.39-45
    • /
    • 2000
  • The stability of vitamin A, $B_1,\;B_2,\;B_6$, C in aqueous multivitamin solutions was carried out by means of estimation of reaction velocity and the results are described in this paper. The stability of vitamin A, $B_1$ and C due to thermal degradation method in aqueous multivitamin solutions was evaluated at 40, 50, 60 and $70^{\circ}C$ up to 40 days. The shelf-lives of vitamin A, B₁ and C in this preparation, calculated using the Arrhenius equation, were 1493, 449 and 639 days at $25^{\circ}C$ respectively. Examination was made on the effect of initial concentration of vitamin $B_2$$(C_0)$ on light fading of vitamin $B_2$ in aqueous multivitamin solutions and it was found that the fading progressed according to the following formula : $-{\frac {dc}{dt}}=K_c\;{\frac C{C_0}}$ where Kc is apparent light-fading rate constant relate to $C_0$. Photodecomposition of vitamin $B_6$ in aqueous multivitamin solutions was apparently first order kinetics and was stable in polyethylene>brown color>glass container to sunlight. Photodecomposition of vitamin $B_6$ in four seasons also investigated.

  • PDF

Fine Size YAG:Tb Phosphor Particles Prepared by Spray Pyrolysis (분무 열분해 공정에 의해 합성된 미세 YAG:Tb 형광체)

  • Lee, Hyo Jin;Hong, Seung Kwon;Jung, Dae Soo;Kang, Yun Chan;Jung, Kyeong Youl
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.407-411
    • /
    • 2005
  • YAG:Tb($Y_3Al_5O_{12}:Tb$) phosphor particles were prepared by spray pyrolysis from spray solution containing various types of flux materials. The effects of type of flux, organic material and post-treatment temperature on the characteristics of morphology, crystallinity and photoluminescence of YAG:Tb phosphor particles were investigated. Citric acid and ethylene glycol used as organic additive improved the photoluminescence intensity of the YAG:Tb phosphor particles without destruction of the morphology after post-treatment at high temperature. However, the spherical shape of the precursor particles obtained by spray pyrolysis from spray solution containing high amount of flux material disappeared after post-treatment at $1300^{\circ}C$. YAG:Tb phosphor particles prepared from spray solution containing lithium carbonate flux had fine size and regular morphology after post-treatment. Lithium carbonate used as flux material was also efficient in improvement of the photoluminescence intensity of the YAG:Tb phosphor particles. The optimum photoluminescence intensity of the YAG:Tb phosphor particles prepared from spray solution containing lithium carbonate flux was 189% of that of the phosphor particles prepared from spray solution without flux material.

삼중수소 증식 재료 및 중성자 반사 재료의 연구개발

  • Yu, In-Geun;Lee, Sang-Jin;Jo, Seung-Yeon;An, Mu-Yeong;Gu, Deok-Yeong;Yun, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.279-279
    • /
    • 2010
  • 한국형 헬륨 냉각 고체형 증식(Helium Cooled Solid Breeder : HCSB) 시험 블랑켓(Test Blanket Module : TBM)은 삼중수소 증식을 위해서 $Li_2TiO_3$$Li_4SiO_4$ 페블을 고려하고 있으며, 중성자 반사 재료로는 SiC가 코팅된 흑연 페블을 사용할 예정이다. $Li_2TiO_3$$Li_4SiO_4$ 페블을 제조하기 위해서는 먼저 각각의 분말 제조가 선행되어야 한다. $Li_2TiO_3$ 분말을 합성하기 위해서는 먼저 Lithium 금속염과 Isopropoxide를 용매 및 폴리머 캐리어로서의 두 가지 기능을 하는 에틸렌글리콜에 첨가한 후 가열하여 완전히 용해시킨 후 혼합 용액을 건조시켜 겔형의 전구체를 제조한다. 이를 하소한 후 결정화시켜 Titanate 분말을 얻는데 이때의 건조, 하소 및 결정화 온도의 조건에 따른 분말의 크기 및 특성이 각각 다르다. 즉 하소 온도가 $600^{\circ}C$ 미만이면 열분해된 폴리머로부터 잔유 탄소가 남게 되고, $700^{\circ}C$를 초과하면 결정화가 시작된다. 이렇게 얻어진 Titanate분말은 지르코니아 볼을 이용하여 약 24 시간 동안 볼 밀링 과정을 통해 입도분포가 좁은 미세한 Titanate 분말로 만들었다. $Li_2TiO_3$ 페블은 위의 과정에서 얻어진 미세분말에 바인더를 이용하여 페블화 시킨 후 $1200^{\circ}C$의 전기로에서 최종 소결한 것이다. 중성자 반사 재료인 흑연페블은 강도가 약하기 때문에 표면에 SiC를 수 ${\mu}m$ 코팅해서 사용할 예정이다. 선행실험으로 건식법을 이용하여 SiC 코팅을 실시했으며, 그 결과를 소개할 것이다.

  • PDF

Properties of Al Doped LiMn2O4 Powders Prepared by Spray Pyrolysis Process (분무열분해 공정에 의해 합성된 Al이 치환된 LiMn2O4 분말의 특성)

  • Ju, Seo Hee;Jang, Hee Chan;Kang, Yun Chan
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.84-88
    • /
    • 2009
  • Al doped $LiMn_2O_4$ cathode powders with fine size were synthesized by an ultrasonic spray pyrolysis method from the spray solution with citric acid and ethylene glycol. The as-prepared powders with spherical shape, porous structure and micron size turned into $LiMn_{11/6}Al_{1/6}O_4$ powders with micron size and regular morphology after post-treatment above $800^{\circ}C$. The $LiMn_{11/6}Al_{1/6}O_4$ powders had low initial discharge capacity of 94 mAh/g at a post-treatment temperature of $700^{\circ}C$. As the post-temperature increased from $750^{\circ}C$ to $1,000^{\circ}C$, the initial discharge capacities of the $LiMn_{11/6}Al_{1/6}O_4$ powders changed from 103 to 117 mAh/g. The $LiMn_{11/6}Al_{1/6}O_4$ powders had the maximum discharge capacity at a post-treatment temperature of $750^{\circ}C$. However, the $LiMn_{11/6}Al_{1/6}O_4$ powders post-treated at a temperature of $900^{\circ}C$ had the good cycle properties. The discharge capacities of the $LiMn_{11/6}Al_{1/6}O_4$ powders dropped from 107 to 100 mAh/g (93% capacity retention) by the 70th cycle at a current density of 0.1 C.

Luminescence Characterization of SrAl2O4:Ho3+ Green Phosphor Prepared by Spray Pyrolysis (분무열분해법으로 제조된 SrAl2O4:Ho3+ 녹색 형광체의 발광특성)

  • Jung, Kyeong Youl;Kim, Woo Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.620-626
    • /
    • 2015
  • $Ho^{3+}$ doped $SrAl_2O_4$ upconversion phosphor powders were synthesized by spray pyrolysis, and the crystallographic properties and luminescence characteristics were examined by varying activator concentrations and heattreatment temperatures. The effect of organic additives on the crystal structure and luminescent properties was also investigated. $SrAl_2O_4:Ho^{3+}$ powders showed intensive green emission due to the $^5F_4/^5S_2{\rightarrow}^5I_8$ transition of $Ho^{3+}$. The optimal $Ho^{3+}$ concentration in order to achieve the highest luminescence was 0.1%. Over this concentration, emission intensities were largely diminished via a concentration quenching due to dipole-dipole interaction between activator ions. According to the dependence of emission intensity on the pumping power of a laser diode, it was clear that the upconversion of $SrAl_2O_4:Ho^{3+}$ occurred via the ground state absorption-excited state absorption processes involving two near-IR photons. Synthesized powders were monoclinic as a major phase, having some hexagonal phase. The increase of heat-treatment temperatures from $1000^{\circ}C$ to $1350^{\circ}C$ led to crystallinity enhancement of monoclinic phase, reducing hexagonal phase. The hexagonal phase, however, did not disappear even at $1350^{\circ}C$. When both citric acid (CA) and ethylene glycol (EG) were added to the spray solution, the resulting powders had pure monoclinic phase without forming hexagonal phase, and led to largely enhancement of crystallinity. Also, N,N-Dimethylformamide (DMF) addition to the spray solution containing both CA and EG made it possible to effectively reduce the surface area of $SrAl_2O_4:Ho^{3+}$ powders. Consequently, the $SrAl_2O_4:Ho^{3+}$ powders prepared by using the spray solution containing CA/EG/DMF mixture as the organic additives showed about 168% improved luminescence compared to the phosphor prepared without organic additives. It was concluded that both the increased crystallinity of high-purity monoclinic phase and the decrease of surface area were attributed to the large enhancement of upconversion luminescence.

New Yellow Quinoline Derivatives Including Dione Moiety for Image Sensor Color Filters (이미지 센서 컬러 필터용 다이온 성분을 포함하는 신규 황색 퀴놀린 유도체)

  • Sunwoo, Park;Seyoung, Oh;Yuna, Kang;Hyukmin, Kwon;Sunwoo, Dae;Changyu, Lee;Dae Won, Kim;Min-Sik, Jang;Jongwook, Park
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.80-85
    • /
    • 2023
  • New yellow quinoline-dione dye derivatives were designed and synthesized for use in image sensor color filters. The synthesized compounds have a basic chemical structure composed of quinoline and dione groups. New materials were evaluated on the basis of their optical and thermal properties under conditions mimicking those of a commercial device fabrication process. A comparison of their related performances revealed that, between the two prepared compounds, 2-(3-hydroxyquinolin-2(1H)-ylidene)-1H-indene-1,3(2H)-dione (HQIDO) exhibited the superior performance as an image sensor color filter material, including a solubility greater than 0.5 wt% in propylene glycol monomethyl ether acetate solvent and a high decomposition temperature of 298 ℃, respectively. The results suggest that HQIDO can be used as a yellow dye additive in an image sensor colorant.

New Yellow Aromatic Imine Derivatives Based on Organic Semiconductor Compounds for Image Sensor Color Filters (이미지 센서 컬러 필터용 유기반도체 화합물 기반의 신규 황색 아로마틱 이민 유도체)

  • Sunwoo Park;Joo Hwan Kim;Sangwook Park;Godi Mahendra;Jaehyun Lee;Jongwook Park
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.590-595
    • /
    • 2023
  • Novel aromatic imine derivatives with yellow were designed and synthesized for their potential application in color filters for image sensors. The synthesized compounds possessed chemical structures using aromatic imine groups. This innovative material was evaluated thoroughly, considering its optical and thermal properties under conditions similar to commercial device manufacturing processes. Following a rigorous performance evaluation, it was found that (E)-3-methyl-4-((3-methyl-5-oxo-1-phenyl-1H-pyrazol-4(5H)-ylidene)methyl)-1-phenyl-1H-pyrazol-5(4H)-one, abbreviated as MOPMPO, exhibited an impressive solubility of 0.5 wt% in propylene glycol monomethyl ether acetate, predominantly utilized as the solvent in the industry. Furthermore, MOPMPO showed exceptional performance as a color filter material for image sensors, having a high decomposition temperature of 290 ℃. These data unequivocally establish MOPMPO as a viable yellow dye additive for coloring materials in image sensor applications.