• Title/Summary/Keyword: 글루코아밀라제

Search Result 6, Processing Time 0.027 seconds

Lactic Acid Fermentation of Rice and Quality Improvement by Amylolytic Enzyme Treatment during Fermentation (쌀의 젖산발효 및 발효중 전분가수분해효소 처리에 의한 품질 향상)

  • Mok, Chul-Kyoon;Han, Jin-Suk;Kim, Young-Jin;Kim, Nam-Soo;Kwon, Dae-Young;Nam, Young-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.739-744
    • /
    • 1991
  • A palatable paste-type lactic fermented rice (LFR) was prepared by lactic acid fermentation after liquefaction and saccharification of cooked rice. A mixed culture of Lactobacillus bulgaricus and Streptococcus thermophilus (1 : 1) produced the LFR of the best quality. A great improvement in quality of the LFR was achieved by 0.02% each ${\alpha}-amylase$ and glucoamylase treatment during the fermentation (simultaneous saccharification and fermentation), which resulted from the increased sourness and sweetness and the decreased size of solid particles contained in the LFR. The resulted LFR was superior in quality. Physical and chemical properties of the LFR were evaluated.

  • PDF

The Fine Structure of Amylopectin and Physicochemical Properties of Starch Granules from Endosperm Varieties in Glutinous Rice (찹쌀 전분의 미세구조 및 이화학적 특성 비교)

  • Sung, You-Me;Nam, Seok-Hyun;Kang, Mi-Young
    • Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.18-23
    • /
    • 2000
  • stract : Fourteen varieties of glutinous rices were examined on amylopectin fine structure and physicochemical properties of starch granules. The amylopectin chain length distribution and short chain/long chain ratio were investigated by enzymatic treatments followed by high-performance size-exclusion chromatographic separation. Chain length distribution profiles of the isoamylase-debranched amylopectins showed distinct patterns according to varieties. Beongok showed the highest short chain/long chain ratio, while TP2579A1 showed the lowest one. Sharebyeo-152-1-B showed the highest hydrolysis rate to 15% $H_2SO_4$, while Sandong 47 showed the lowest one. Fourteen varieties of rice starch granules showed A-type pattern on X-ray diffractograms. Non-gelitinized starch granules from Keochang 1 and Beongok had almost 100% hydrolysed by glucoamylase for 3 hrs at $370^{\circ}C$.

  • PDF

Characteristics and Applications of Immobilized Glucoamylase (고정화 글루코아밀라제의 성질과 응용)

  • Cho, Sung-Hwan;Kim, Ze-Uook
    • Applied Biological Chemistry
    • /
    • v.28 no.4
    • /
    • pp.233-238
    • /
    • 1985
  • Glucoamylases catalyze a stepwise hydrolysis of starch with the production of glucose. In order to make an efficient conversion of starch into glucose, glucoamylases prepared from Rhizopus spp. (Sigma Co.) were attached to a porous glass and immobilized by glutaraldehyde-induced crosslinking. The porous glass used in this study was $ZrO_2$ coated, $40{\sim}80$ mesh, 550 A pore diameter. Using the forgoing glass, we could couple as much as 50mg of protein per gram of carrier. Substrate for the glucoamylase was an enzyrne-modified thin-toiling 30% cornstarch solution used where greater solubility and low viscosity are desired. Immobilized glucoamylase had an optimum pH 7.0 to the alkaline side of soluble enzyme. Km values of immobilized and soluble enzyme were 1.04 mM and 1.25mM, respectively. The thermal stability of glucoamylase was increased by immobilization and the immobilized enzyme showed an optimum temperature at $40{\sim}60^{\circ}C$. The continuous conversion of cornstarch to glucose by use of immobilized glucoamylase resulted in the production of a more than 90 DE product.

  • PDF

The Signal Sequence of Sporulation-Specific Glucoamylase Directs the Secretion of Bacterial Endo-1,4-β-D-Glucanase in Yeast (효모에서 포자형성 특이 글루코아밀라제의 분비서열에 의한 세균 endo-1,4-β-D-glucanase의 분비)

  • Ahn, Soon-Cheol;Kim, Eun-Ju;Chun, Sung-Sik;Cho, Yong-Kweon;Moon, Ja-Young;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.142-147
    • /
    • 2012
  • The sporulation-specific glucoamylase (SGA) of Saccharomyces diastaticus is known to be produced in the cytoplasm during sporulation. For the purpose of proving that SGA has secretory potential, we constructed a hybrid plasmid, pYESC25, containing the promoter and the putative signal sequence of the SGA fused in frame to the endo-1,4-${\beta}$-D-glucanase (CMCase) gene of Bacillus subtilis without its own signal sequence. The recipient yeast strain of S. diastaticus YIY345 was transformed with the hybrid plasmid. CMCase secretion from S. diastaticus harboring pYESC25 into culture medium was confirmed by the formation of yellowish halos around transformants after staining with Congo red on a CMC agar plate. The transformant culture was fractionated to the extracellular, periplasmic, and intracellular fraction, followed by the measurement of CMCase activity. About 63% and 13% enzyme activity were detected in the culture supernatant (extracellular fraction) and periplasmic fraction, respectively. Furthermore, ConA-Sepharose chromatography, native gel electrophoresis, and activity staining revealed that CMCase produced in yeast was glycosylated and its molecular weight was larger than that of the unglycosylated form from B. subtilis. Taking these findings together, SGA has the potential of secretion to culture medium, and the putative signal sequence of SGA can efficiently direct bacterial CMCase to the yeast secretion pathway.

Cloning of Isoamylase Gene of Pectobacterium carotovorum subsp. carotovorum LY34 and Identification of Essential Residues of Enzyme (Pectobacterium carotovorum subsp. carotovorum LY34에서 Lsoamylase 유전자 클로닝 및 효소 활성의 필수 잔기 확인)

  • Cho, Kye-Man;Kim, Eun-Ju;Math, Renukaradhya K.;Asraful Islam, Shah Md.;Hong, Sun-Joo;Kim, Jong-Ok;Shin, Ki-Jae;Lee, Young-Han;Kim, Hoon;Yun, Han-Dae
    • Journal of Life Science
    • /
    • v.17 no.9 s.89
    • /
    • pp.1182-1190
    • /
    • 2007
  • The gene encoding for isoamylase of the Pectobacterium carotovorum subsp. carotovorum (Pcc) LY34 was cloned and expressed into Escherichia coli $DH5{\alpha}$. Isoamylase catalyzes the hydrolysis of ${\alpha}-1,6-glycosidic$ linkages specifically in amylopectin, glycogen, and derived oligosaccharides, while the enzyme did not hydrolyze ${\alpha}-1,4-glycosidic$ linkages of amylose. The isoamylase gene (glgX) had an open reading frame of 1,977 bp encoding 658 amino acid residues with a calculated molecular weight of 74,188 Da. The molecular weight of the enzyme was also estimated to be 74 kDa by activity staining of a SDS-PA gel. The mature GlgX had a calculated pI of 4.91. Isoamylase from Pcc LY34 had 70% amino acid identity with isoamylase from Pectobacterium chrysanthemi and contained the four regions conserved among all amylolytic enzymes. The isoamylase was optimally active at pH 7.0 and $40^{\circ}C$. GlgX was $Ca^{2+}-dependent$. The changes of Asp-335, Glu-370, and Asp-442 into Ala, respectively, using site-directed mutagenesis techniques showed that three residues are essential to isolamyalse (GlgX) activity. The sequences around those residues were highly conserved in isoamylase of different origins and GlgX of the glg operon in glycongen biosynthesis.

Characterization of Sporulation-Specific Glucoamylase of Saccharomyces diastaticus (Saccharomyces diastaticus의 포자형성 특이 글루코아밀라제의 특성)

  • Kim, Eun-Ju;Ahn, Jong-Seog;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.683-690
    • /
    • 2010
  • The yeast strains of Saccharomyces diastaticus produce one of three isozymes of an extracellular glucoamylase I, II or III, a type of exo-enzyme which can hydrolyse starch to generate glucose molecules from non-reducing ends. These enzymes are encoded by the STA1, STA2 and STA3 genes. Another gene, sporulation-specific glucoamylase (SGA), also exists in the genus Saccharomyces which is very homologous to the STA genes. The SGA has been known to be produced in the cytosol during sporulation. However, we hypothesized that the SGA is capable of being secreted to the extracellular region because of about 20 hydrophobic amino acid residues at the N-terminus which can function as a signal peptide. We expressed the cloned SGA gene in S. diastaticus YIY345. In order to compare the biochemical properties of the extracellular glucoamylase and the SGA, the SGA was purified from the culture supernatant through ammonium sulfate precipitation, DEAE-Sephadex A-50, CM-Sephadex C-50 and Sephadex G-200 chromatography. The molecular weight of the intact SGA was estimated to be about 130 kDa by gel filtration chromatography with high performance liquid chromatography (HPLC) column. Sodium dedecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed it was composed of two heterogeneous subunits, 63 kDa and 68 kDa. The deglycosylation of the SGA generated a new 59 kDa band on the SDS-PAGE analysis, indicating that two subunits are glycosylated but the extent of glycosylation is different between them. The optimum pH and temperature of the SGA were 5.5 and $45^{\circ}C$, respectively, whereas those for the extracellular glucoamylase were 5.0 and $50^{\circ}C$. The SGA were more sensitive to heat and SDS than the extracellular glucoamylase.