• Title/Summary/Keyword: 근적외선 단층영상

Search Result 3, Processing Time 0.019 seconds

The Evaluation of Non-Ionizing Radiation (Near-Infrared Radiation) based Medical Imaging Application : Diabetes Foot (비전리 방사선 (근적외선) 기반 의료영상 활용 가능성 평가: 당뇨발)

  • Jung, Young-Jin;Shin, Cheol-Won;Ahn, Sung-Min;Hong, Jun-Yong;Ahn, Yun-Jin;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.399-406
    • /
    • 2016
  • Near-infrared radiation (NIR) is non-ionizing, non-invasive, and deep tissue penetration in biological material, thereby increasing research interests as a medical imaging technique in the world. However, the use of current near-infrared medical image is extremely limited in Korea (ROK) since it is not well known among radiologic technologists and radiological researchers. Therefore to strengthen the knowledge for NIR medical imaging is necessary so as to prepare a qualified radiological professionals to serve medical images in high-quality on the clinical sites. In this study, an overview of the features and principles of NIR imaging was demonstrated. The latest research topics and worldwide research trends were introduced for radiologic technologist to reinforce their technical skills. In particular, wound care and diabetic foot which have high feasibility for clinical translation were introduced in order to contribute to accelerating NIR research for developing the field of radiological science.

Frequency-domain Diffuse Optical Tomography System Adopting Lock-in Amplifier (Lock-in 증폭기를 채용한 주파수영역 확산 광단층촬영 시스템)

  • Jun, Young-Sik;Baek, Woon-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.3
    • /
    • pp.134-140
    • /
    • 2011
  • In this paper, we developed a frequency-domain diffuse optical tomography(DOT) system for non-invasively imaging in vivo. The system uses near-infrared(NIR) light sources and detectors for which the photon propagation in human tissue is dominated by scattering rather than by absorption. We present the experimental reconstruction images of absorption and scattering coefficients using a liquid tissue phantom, and we obtain the location and shape of an anomaly which has different optical properties than the phantom.

Implementation of Multi-channel Concurrent Detection Homodyne Frequency-domain Diffuse Optical Imaging System (다채널 동시측정을 적용한 호모다인 주파수영역 확산 광 이미징 시스템의 구현)

  • Jun, Young Sik;Baek, Woon Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.1
    • /
    • pp.23-31
    • /
    • 2012
  • In this paper, we developed a frequency-domain diffuse optical imaging (DOI) system for imaging non-invasively using near-infrared (NIR) light sources and detectors. 70-MHz modulation and a homodyne scheme were adopted. By calibration of the coupling coefficients, concurrent detection measurements by 4 detector sets were optimized. We presented experimental reconstruction images of absorption and scattering coefficients in a liquid phantom, located an anomaly in the phantom and determined its optical properties. The images by the multi-channel concurrent detection were improved over the results by single-channel sequential detection. Tomographic slices of absorption and scattering coefficients in the phantom with an anomaly were also presented.