• Title/Summary/Keyword: 근사 구조 설계

Search Result 301, Processing Time 0.028 seconds

Reliability Analysis under Input Variable and Metamodel Uncertainty using Bayesian Approach (베이지안 접근법을 이용한 입력변수 및 근사모델 불확실성 하에서의 신뢰성 분석)

  • An, Da-Wn;Won, Jun-Ho;Choi, Joo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.97-100
    • /
    • 2009
  • 신뢰성 분석은 불확실성으로 인한 제품의 성능 변동을 안전확률이나 파괴확률로 정량화 하여 설계에 이용하기 위해 연구되어 왔다. 불확실성은, 데이터의 양에 따라-물질의 본질적인 특성으로서의 많은 데이터가 주어진 경우의 물리적 불확실성과 부족한 데이터에서의 인식론적 불확실성으로 구분되고, 불확실성을 갖는 대상에 따라-입력변수 및 근사모델 불확실성으로 구분된다. 물리적 불확실성에 대한 연구는 많이 진행되어 왔지만, 실제 산업현장에는 부족한 데이터로 인한 인식론적 불확실성이 지배적이며 이에 대한 연구는 최근에서야 진행되고 있다. 불확실성을 고려하는 신뢰성 기반 설계에는 효율성을 위해 실제모델을 대체하는 근사모델이 이용되는데, 근사모델법 자체에 대한 연구는 많이 진행되어 왔으나, 근사모델 이기 때문에 존재하는 불확실성을 고려한 연구는 최근에서야 연구되기 시작하였다. 본 연구에서는 베이지안 접근법에 기반하여 입력변수 및 근사모델 불확실성을 통합 고려하는 새로운 신뢰성 분석 기법을 제시하고 수치예제를 통해 타당성을 증명한 후, 이를 공학문제에 적용한다.

  • PDF

Comparative Study of Approximate Optimization Techniques in CAE-Based Structural Design (구조 최적설계를 위한 다양한 근사 최적화기법의 적용 및 비교에 관한 연구)

  • Song, Chang-Yong;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1603-1611
    • /
    • 2010
  • The comparative study of regression-model-based approximate optimization techniques used in the strength design of an automotive knuckle component that will be under bump and brake loading conditions is carried out. The design problem is formulated such that the cross-sectional sizing variables are determined by minimizing the weight of the knuckle component that is subjected to stresses, deformations, and vibration frequency constraints. The techniques used in the comparative study are sequential approximate optimization (SAO), sequential two-point diagonal quadratic approximate optimization (STDQAO), and approximate optimization based on enhanced moving least squares method (MLSM), such as CF (constraint feasible)-MLSM and Post-MLSM. Commercial process integration and design optimization (PIDO) tools are utilized for the application of SAO and STDQAO. The enhanced MLSM-based approximate optimization techniques are newly developed to ensure constraint feasibility. The results of the approximate optimization techniques are compared with those of actual non-approximate optimization to evaluate their numerical performances.

Multi-level Optimization for Orthotropic Steel Deck Bridges (강상판교의 다단계 최적설계)

  • 조효남;정지승;민대홍
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.2
    • /
    • pp.237-247
    • /
    • 2001
  • 강상판교는 부재수가 많고 구조적 거동이 복잡하여 재래적인 단일수준 (CSL) 알고리즘을 이용하여 최적화하는 것이 매우 어렵기 때문에 본 연구에서는 강상판교를 효율적으로 최적화하기 위해 다단계 최적설계 (MLDS) 알고리즘이 제안되었다. 강상판교를 주형과 강상판으로 나누기 위해 등위법이 사용되었고, 시스템 최적화를 위하여 설계 변수를 줄이는 분해법이 사용되었다. 효율적인 최적설계를 위해 다단계 최적설계 알고리즘은 제약조건 소거기법(Constraint Deletion)과 응력 재해석 같은 근사화 기법을 도입하였다. 변위해석을 위한 제약조건 소거기법은 교량의 최적화에 효율적인 것으로 검증되었고, 제안된 응력 재해석 기법 또한 설계민감도 해석을 필요로 하지 않으므로 매우 효율적이다. MLDS 알고리즘의 적용성과 강건성은 다양한 수치예제를 사용하여 기존의 단일수준 알고리즘과 비교하였다.

  • PDF

On Designing Optimal Structure of Modular Wavelet Neural Network with Time-Frequency Analysis (시간-주파수 분석을 이용한 모듈라 웨이블렛 신경망의 최적 구조 설계)

  • Seo, Jae-Yong;Kim, Yong-Taek;Cho, Hyun-Chan;Jeon, Hong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.2
    • /
    • pp.12-19
    • /
    • 2001
  • In this paper, we propose the new algorithm which can design on the optimal structure of modular system. This system is composed to the wavelet neural network in order to simplify the structure of modular system and use the time-frequency analysis. We will determine the number of module and node of each sub-system using the proposed algorithm. This algorithm provides the methodology, which we will design optimal structure of modular wavelet neural network through analyzing the character of system. We apply the proposed new structure and algorithm to approximation problem and evaluate the effectiveness of the proposed system and algorithm.

  • PDF

A Study on Adaptation of Neural Network to Warren Truss Design (와렌 트러스 설계에의 신경망 적용에 관한 연구)

  • Shin, Dong Cheol;Lee, Seung Chang;Cho, Young Sang
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.413-422
    • /
    • 2003
  • Most engineers tend to rely on their intuition or existing data in formulating structural design or preliminary estimate of various conditions. Because of these variations, the artificial neural network is used as an alternative design model of the warren truss since it can handle uncertainty through the probability method. This research validated the approximate structural design model of the warren truss, with its proper parameter values of the neural network and design process falling within 10 percent torrence of the different designs that resulted between this model and the MIDAS program. The suggested model for the process was adapted for the truss design using the member section table, while time saving and efficiency are based on the allowed range of torrence.

A Comparative Study on Approximate Models and Sensitivity Analysis of Active Type DSF for Offshore Plant Float-over Installation Using Orthogonal Array Experiment (직교배열실험을 이용한 해양플랜트 플로트오버 설치 작업용 능동형 DSF의 민감도해석과 근사모델 비교연구)

  • Kim, Hun-Gwan;Song, Chang Yong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.187-196
    • /
    • 2021
  • The paper deals with comparative study for characteristics of approximation of design space according to various approximate models and sensitivity analysis using orthogonal array experiments in structure design of active type DSF which was developed for float-over installation of offshore plant. This study aims to propose the orthogonal array experiments based design methodology which is able to efficiently explore an optimum design case and to generate the accurate approximate model. Thickness sizes of main structure member were applied to the design factors, and output responses were considered structure weight and strength performances. Quantitative effects on the output responses for each design factor were evaluated using the orthogonal array experiment. Best design case was also identified to improve the structure design with weight minimization. From the orthogonal array experiment results, various approximate models such as response surface model, Kriging model, Chebyshev orthogonal polynomial model, and radial basis function based neural network model were generated. The experiment results from orthogonal array method were validated by the approximate modeling results. It was found that the radial basis function based neural network model among the approximate models was able to approximate the design space of the active type DSF with the highest accuracy.

An Approximation Method for Configuration Optimization of Structures (구조물 형상최적화를 위한 근사해석법에 관한 연구)

  • Jang, Dong Jin;Hoon, Sang Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.7-17
    • /
    • 1990
  • The objective of this paper is to provide a method of optimizing are as of the members as well as shape of both truss and arch structures. The design process includes satisfaction of stress and Euler buckling stress constraints for truss and combined stress constraints for arch structures. In order to reduce the number of detailed finite element analysis, the Force Approximation Method is used. A finite element analysis of the initial structure is performed and the gradients of the member end forces are calculated with respect to the areas and nodal coordinates. The gradients are used to form an approximate structural analysis based on first order Taylor series expansions of the member end forces. Using move limits, a numerical optimizer minimizes the volume of the structure with information from the approximate structural analysis. Numerical examples are performed and compared with other methods to demonstrate the efficiency and reliability of the Force Approximation Method for shape optimization. It is shown that the number of finite element analysis is greatly reduced and that it leads to a highly efficient method of shape optimization of structures.

  • PDF

X-FEM Based Shape Design Sensitivity Analysis of Crack Propagation Problems (균열진전 문제의 X-FEM 기반 형상 설계민감도 해석)

  • Moon, Min-Yeong;Ahn, Seung-Ho;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.697-700
    • /
    • 2011
  • 본 논문에서는 X-FEM을 사용하여 혼합모드 하중 상태에서의 이차원 선형탄성체의 균열문제에 대한 형상 설계민감도 해석을 수행하였다. X-FEM이란 균열과 같은 특수한 해를 근사하는 방법으로써, 확장함수를 도입하여 FEM의 한계를 극복하는 방법론이다. X-FEM 하에서 해를 근사하는 데 쓰이는 확장함수들은 불연속성과 특이성을 포함하고 있어 물리적 영역에 의존한다. 이는 설계민감도 해석을 수행하는 과정에서 그러한 의존성을 고려해주는 것이 필요하다. 따라서 본 논문에서는 X-FEM 기반의 형상 설계민감도 해석해를 제안하고자 한다. 식의 유도는 전 미분 공식에 기초하고 있으며, 형상함수의 설계변분에 대한 의존성에 관한 항을 추가시켰다. 또한, 균열 주위의 국부적인 공간에서의 확장된 자유도에 설계속도를 가한다. 이에 대한 몇 가지 수치 예제를 통하여 개발된 방법론의 타당성을 확인하였다.

  • PDF

Approximate Shape Optimization Technique by Sequential Design Domain (순차설계영역을 이용한 근사 형상최적에 관한 연구)

  • 김우현;임오강
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.31-38
    • /
    • 2004
  • Mechanical design process is generally accomplished by design, analysis, and test. Designers use programs fitting purpose, and obtain repeatedly a response of a simulation program, a sub-program for optimization. In this paper, shape optimization using approximate optimization technique is carried out with sequential design domain(SDD). In addition, algorithm executing Pro/Engineer and ANSYS automatically are adopted in the approximate optimization program by SDD. It is difficult for design problem to be approximated accurately for the whole range of design space. However, more or less accurate approximation is constructed if SDD is applied to that case. SDD starts with a certain range which is off-seted from midpoint of an initial design domain and then SDD of the next step is determined by a move limited. Convergence criterion is defined such that optimal point must be located within SDD during the two steps. Also, the PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm is used to solve approximate optimization problems. This algorithm uses the second-order information and the active set strategy, in order to seek the direction of design variables.

Evaluation Concept of Progressive Collapse Sensitivity of Steel Moment Frame using Energy-based Approximate Analysis (에너지 기반 근사해석을 이용한 철골모멘트골조의 연쇄붕괴 민감도 평가방법)

  • Noh, Sam-Young;Park, Ki-Hwan;Lee, Sang-Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.108-116
    • /
    • 2017
  • In this study, the prototype structure of seismically designed steel moment frame was analyzed statically and dynamically in order to demonstrate the applicability of energy-based approximate analysis with the dynamic effect of sudden column loss in the evaluation of the collapse resistance and a method for assessing the sensitivity to progressive collapse was proposed. For the purpose of comparing the structural behavior of buildings with different structural systems, the sensitivity of the structure to the sudden removal of vertical members can be used as a significant measure. The energy-based approximate analysis prediction for the prototype structure considered in the study showed good agreement with the dynamic analysis result. In the sensitivity evaluation, the structural robustness index that indicates the ability of a structure to resist collapse induced by abnormal loads was used. It was confirmed that the proposed methods can be used conveniently and rationally in progressive collapse analysis and design.