디지털 포렌식 분야가 직면한 과제 중 하나는 대량의 데이터를 어떻게 효율적으로 처리할 것인가이다. 디지털 객체 간의 유사성을 빠르게 식별하기 위해 신뢰성 있는 다양한 근사 매칭 알고리즘이 계속하여 제시되어왔다. 하지만 알고리즘만으로 문자열의 의미적 유사성을 식별하면 많은 오탐을 보여 오히려 그 실효성을 끌어내리고 있다. 이와 같은 문제점을 해결하고자 근사 매칭 대상의 전처리 과정을 추가하여, 알고리즘 자체의 신뢰성은 유지하면서 유사도 탐지 정확성을 더 높일 수 있는 방법을 제시한다. 본 논문에서는 의미적 유사성을 식별하고자 eml과 hwp 세트를 가지고 sdhash로 실험하였으며, 실험 결과를 이용하여 그 효과성을 검증한다.
히스토그램은 최근들어 많은 관심을 끌고 있다. 히스토그램은 주로 상용 데이타베이스 관리 시스템에서 질의 최적화를 위해 속성의 값에 대한 데이타 분포를 추정하는데 사용되었다. 최근에는 근사 질의와 스트림 데이타에 대한 연구 분야에서 히스토그램에 대한 관심이 커지고 있다. 관계형 데이타베이스에서 두 개 이상의 속성에 대한 결합 데이타 분포를 근사시키는 가장 간단한 방법은 각 속성의 데이타 분포가 결합 데이타 분포에 독립적이라고 가정하는 속성 값 독립(Attribute Value Independence: AVI) 가정하 에서 각각의 속성에 대해서 히스토그램을 만드는 것이다 그러나 실제 데이타에서 이 가정은 잘 맞지 않는다. 따라서 이 문제를 해결하기 위해서 웨이블릿, 랜덤 샘플링, 다차원 히스토그램과 같은 기법들이 제안되 었다. 그 중에서 GENHIST는 실수형 속성에 대한 데이타 분포를 근사시키기 위해 고안된 다차원의 히스토그램이다. GENHIST는 데이타 분포를 좀 더 효과적으로 근사시키기 위해서 중첩되는 버킷을 사용한다. 본 논문에서는 SSE(Sum Squared Error)를 최소화시키는 중첩되는 버킷들의 최적 빈도를 결정하는 OPT 알고리즘을 제안한다. 처음에 GENHIST에 의해 중첩되는 버킷으로 구성되는 히스토그램을 만든 후에 OPT 알고리즘에 의해서 각 버킷의 빈도를 다시 계산해서 GENHIST를 개선시킬 수 있다. 실험 결과는 OPT 알고리즘이 GENHIST에 의해 만들어진 히스토그램의 정확도를 크게 개선시킴을 보여준다.
외판원 문제는 잘 알려진 NP-완전 문제로, 최적해(optimal value)를 구하는 다양한 알고리즘들이 개발되었다. 그러나 최악의 경우 지수 시간이 걸리므로 수행시간을 줄이는 다양한 방법들이 제안되고 있다. 최근접 휴리스틱 알고리즘은 최적해를 구하는 다른 알고리즘들에 비해 구조가 비교적 간단하다. 따라서 본 논문에서는 외판원 문제(Traveling Salesman Problem, TSP)의 최적해를 구할 수 있는 분기 함수(bounding function)를 적용한 분산 최근접 휴리스틱(nearest neighbor heuristic) 알고리즘을 PVM(Parallel Virtual Machine)에서 제공하는 마스터/슬래이브(master/slave) 모델을 사용하여 설계하고 구현하였다. 먼저 최적해를 찾는 수행 시간을 줄이기 위해 최적화 문제에서 좋은 성능을 보이는 분산 유전 알고리즘(distributed genetic algorithm)을 수행해 얻은 근사해(near optimal)를 초기 분기 함수로 사용한다. 특히 더욱 좋은 근사해를 구하고자 유전 연산자인 돌연변이를 새롭게 변형하여 적용하였다.
저수분석(low flow analysis)은 수자원공학에서 중요한 분야 중 하나이며, 특히 저수량 빈도분석(low flow frequency analysis)의 결과는 저수(貯水)용량의 설계, 물 수급계획, 오염원의 배치 및 관개와 생태계의 보존을 위한 수량과 수질의 관리에 중요하게 사용된다. 그러므로 본 연구에서는 저수량 빈도분석을 위한 점빈도분석을 수행하였으며, 특히 빈도분석에 있어서의 불확실성을 탐색하기 위하여 Bayesian 방법을 적용하고 그 결과를 기존에 사용되던 불확실성 탐색방법과 비교하였다. 본 논문의 I편에서는 Bayesian 방법 중 사전분포(prior distribution)와 우도함수(likelihood function)의 복잡성에 상관없이 계산이 가능한 Bayesian MCMC(Bayesian Markov Chain Monte Carlo) 방법과 Metropolis-Hastings 알고리즘을 사용하기 위한 여러과정의 이론적 배경과 Bayesian 방법에서 가장 중요한 요소인 사전분포를 구축하고 이를 비교 및 평가하였다. 고려된 사전분포는 자료에 기반하지 않은 사전분포와 자료에 기반한 사전분포로써 두 사전분포를 이용하여 Metropolis-Hastings 알고리즘을 수행하고 그 결과를 비교하여 저수량 빈도분석에 합리적인 사전분포를 선정하였다. 또한 알고리즘의 수행과정에서 필요한 제안분포(proposal distribution)를 적용하여 그에 따른 알고리즘의 효율성을 채택률(acceptance rate)을 산정하여 검증해 보았다. 사전분포의 분석 결과, 자료에 기반한 사전분포가 자료에 기반하지 않은 사전분포보다 정확성 및 불확실성의 표현에 있어서 우수한 결과를 제시하는 것을 확인할 수 있었고, 채택률을 이용한 알고리즘의 효용성 역시 기존 연구자들이 제시하였던 만족스러운 범위를 가지는 것을 알 수 있었다. 최종적으로 선정된 사전분포는 본 연구의 II편에서 Bayesian MCMC 방법의 사전분포로 이용되었으며, 그 결과를 기존 불확실성의 추정방법의 하나인 2차 근사식을 이용한 최우추정(maximum likelihood estimation)방법의 결과와 비교하였다.
본 논문은 CNN (Convolutional Neural Network)와 2D Lidar 센서에서 획득한 위치 데이터를 이용하여 이미지를 분류하는 방법을 제시한다. Lidar 센서는 데이터 정확도, 형상 왜곡 및 광 변화에 대한 강인성 측면에서의 이점으로 인해 무인 장치에 널리 사용되어 왔다. CNN 알고리즘은 하나 이상의 컨볼루션 및 풀링 레이어로 구성되며 이미지 분류에 만족스러운 성능을 보여 왔다. 본 논문에서는 학습 방법에 따라 다른 유형의 CNN 아키텍처들인 Gradient Descent (GD) 및 Levenberg-arquardt (LM)를 구현하였다. LM 방법에는 학습 파라메터를 업데이트하는 요소 중 하나인 Hessian 행렬 근사 빈도에 따라 두 가지 유형이 있다. LM 알고리즘의 시뮬레이션 결과는 GD 알고리즘보다 이미지 데이터의 분류 성능이 우수하였다. 또한 Hessian 행렬 근사가 더 빈번한 LM 알고리즘은 다른 유형의 LM 알고리즘보다 작은 오류를 보여주었다.
이 논문에서는 이미지 데이타베이스에서 모양 특징 기반 이미지 분류와 인덱싱을 위해 객체의 윤곽선 특성을 고려해 임계값을 동적으로 결정하여 최적 우세점을 추출하는 알고리즘을 제안한다. 동적 임계값결정은 원본 모양의 윤곽선 길이 비와 근사화된 다각형의 둘레 길이 비를 알고리즘 수행시 점진적으로 검사하는 방법을 사용한다. 이 알고리즘은 윤곽선 특징을 반영하여 동적인 임계값 검사를 함으로써 의사점 수를 최대한 줄이며 최소 우세점만으로 모양 특징 정보를 추출할 수 있는 장점을 보인다. 제안한 방법은 객체의 윤곽선을 이루는 n개의 점에서 m개의 최적 우세점을 찾는데 평균 O(nlogn)이 걸린다. 최적화 평가는 7가지 서로 다른 특성을 가지는 70개의 합성 모양과 1,100개의 어류 모양에 대해 알고리즘을 적용하고 피 결과에 대해 평가 함수를 구성하여 수행하였다. 최적화율은 실험 모양들에 대해 평균0.92를 보였으며 기존 알고리즘에 대해 약 14% 최적화 성능 개선을 보였다. 제안한 알고리즘을 통해 추출한 모양 특징 정보는 정규화를 통해 이미지 분류와 인덱싱, 유사도 검색에 활용할 수 있다.
본 연구에서는 신경망 기반 독립성분분석의 분리성능을 개선하기 위해 할선법과 모멘트의 조합형 고정점 알고리즘을 제안하였다. 할선법은 독립성분 상호간의 정보를 최소화하는 목적함수의 근을 근사적으로 구함으로써 계산과정을 단순화하여 좀 더 개선된 분리성능을 얻기 위함이고, 모멘트는 계산과정에서 발생하는 발진을 억제하여 보다 빠른 분리속도를 얻기 위함이다. 이렇게 하면 할선법이 가지는 근사성에 따른 우수성과 과거의 속성을 반영하여 발진을 억제하는 모멘트의 우수성을 동시에 살릴 수 있다. 제안된 알고리즘을 $256\times{256}$ 픽셀의 8개 지문과 $512\times{512}$ 픽셀의 10개 영상으로부터 임의의 혼합행렬에 따라 생성된 복합지문과 복합영상을 각각 대상으로 시뮬레이션 한 결과, 뉴우턴법에 기초한 기존의 알고리즘과 할선법만에 기초한 알고리즘보다 각각 우수한 분리률과 빠른 분리속도가 있음을 확인하였다. 또한 할선법의 이용은 뉴우턴법을 이용한 고정점 알고리즘보다 초기값에도 덜 의존하며, 문제의 규모가 커짐에 따른 비현실적인 분리시간도 해결할 수 있음을 확인하였다.
디지털 영상 처리 분야에서 잡음 제거는 활발히 연구되어오고 있으며, 최근에는 블록 기반의 잡음 제거 알고리즘이 널리 사용되고 있다. 저계수행렬 근사 기반의 잡음 제거 알고리즘은 WNNM(Weighted Nuclear Norm Minimization)과 블록 기반의 잡음 제거 방법을 적용하여 잡음 제거 방법에 대한 잠재력을 입증했다. 그러나 저계수행렬 근사 기반의 잡음 제거 알고리즘은 영상복원 과정에서 의도치 않은 아티팩트를 발생시킨다. 본 논문에서는 STFT(Short Time Fourier Transform)을 이용해 영상을 분석하여 기존 알고리즘에서 발생하는 아티팩트를 적응적으로 최소화시키는 방법을 제안한다. 성능을 확인하기 위해 다양한 잡음정도를 포함하는 영상에서 실험하였으며, 비교를 통해 제안된 방법이 기존의 잡음 제거 알고리즘보다 효과적으로 잡음을 제거하는 것을 확인했다.
이동 통신 시스템의 설계에 있어서 기지국의 위치를 선정하는 문제는 기본적으로 셀 내부 및 외부의 간접전파에 의한 최소 SIR을 만족하면서 최대한의 사용자를 최소의 기지국에 할당하는 문제로서 NP-hard 이다. 기존에 주로 사용된 목적함수는 창고위치문제에서 사용하던 것으로 CDMA 이동통신 시스템으로 직접 이용하는 단계에서 문제점이 발생한다. 그 문제점들을 해결하는 목적함수와 최적해 및 근사해를 구하는 알고리즘을 제안하고, 그에 따른 시뮬레이션을 하여 본 논문의 제안이 타당성이 있는지 평가 및 분석하였다. 본 논문에서는 기지국의 위치문제를 경험적 탐색방법을 사용하지 않고 혼합정수계획법의 완전해를 이용하여 최적해 및 근사해를 구하였다.
강화학습(reinforcement learning)은 온라인으로 환경(environment)과 상호작용 하는 과정을 통하여 목표를 이루기 위한 전략을 학습한다. 강화학습의 기본적인 알고리즘인 Q-learning의 학습 속도를 가속하기 위해서, 거대한 상태공간 문제(curse of dimensionality)를 해결할 수 있고 강화학습의 특성에 적합한 함수 근사 방법이 필요하다. 본 논문에서는 이러한 문제점들을 개선하기 위해서, 온라인 퍼지 클러스터링(online fuzzy clustering)을 기반으로 한 Fuzzy Q-Map을 제안한다. Fuzzy Q-Map은 온라인 학습이 가능하고 환경의 불확실성을 표현할 수 있는 강화학습에 적합한 함수근사방법이다. Fuzzy Q-Map을 마운틴 카 문제에 적용하여 보았고, 학습 초기에 학습 속도가 가속됨을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.