• 제목/요약/키워드: 근사알고리즘

검색결과 779건 처리시간 0.033초

의미적 유사성의 효과적 탐지를 위한 데이터 전처리 연구 (A Study on Preprocessing Method for Effective Semantic-based Similarity Measures using Approximate Matching Algorithm)

  • 강하리;정두원;이상진
    • 정보보호학회논문지
    • /
    • 제25권3호
    • /
    • pp.595-602
    • /
    • 2015
  • 디지털 포렌식 분야가 직면한 과제 중 하나는 대량의 데이터를 어떻게 효율적으로 처리할 것인가이다. 디지털 객체 간의 유사성을 빠르게 식별하기 위해 신뢰성 있는 다양한 근사 매칭 알고리즘이 계속하여 제시되어왔다. 하지만 알고리즘만으로 문자열의 의미적 유사성을 식별하면 많은 오탐을 보여 오히려 그 실효성을 끌어내리고 있다. 이와 같은 문제점을 해결하고자 근사 매칭 대상의 전처리 과정을 추가하여, 알고리즘 자체의 신뢰성은 유지하면서 유사도 탐지 정확성을 더 높일 수 있는 방법을 제시한다. 본 논문에서는 의미적 유사성을 식별하고자 eml과 hwp 세트를 가지고 sdhash로 실험하였으며, 실험 결과를 이용하여 그 효과성을 검증한다.

중첩된 버킷을 사용하는 다차원 히스토그램에 대한 개선된 알고리즘 (An Improved Algorithm for Building Multi-dimensional Histograms with Overlapped Buckets)

  • 문진영;심규석
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권3호
    • /
    • pp.336-349
    • /
    • 2003
  • 히스토그램은 최근들어 많은 관심을 끌고 있다. 히스토그램은 주로 상용 데이타베이스 관리 시스템에서 질의 최적화를 위해 속성의 값에 대한 데이타 분포를 추정하는데 사용되었다. 최근에는 근사 질의와 스트림 데이타에 대한 연구 분야에서 히스토그램에 대한 관심이 커지고 있다. 관계형 데이타베이스에서 두 개 이상의 속성에 대한 결합 데이타 분포를 근사시키는 가장 간단한 방법은 각 속성의 데이타 분포가 결합 데이타 분포에 독립적이라고 가정하는 속성 값 독립(Attribute Value Independence: AVI) 가정하 에서 각각의 속성에 대해서 히스토그램을 만드는 것이다 그러나 실제 데이타에서 이 가정은 잘 맞지 않는다. 따라서 이 문제를 해결하기 위해서 웨이블릿, 랜덤 샘플링, 다차원 히스토그램과 같은 기법들이 제안되 었다. 그 중에서 GENHIST는 실수형 속성에 대한 데이타 분포를 근사시키기 위해 고안된 다차원의 히스토그램이다. GENHIST는 데이타 분포를 좀 더 효과적으로 근사시키기 위해서 중첩되는 버킷을 사용한다. 본 논문에서는 SSE(Sum Squared Error)를 최소화시키는 중첩되는 버킷들의 최적 빈도를 결정하는 OPT 알고리즘을 제안한다. 처음에 GENHIST에 의해 중첩되는 버킷으로 구성되는 히스토그램을 만든 후에 OPT 알고리즘에 의해서 각 버킷의 빈도를 다시 계산해서 GENHIST를 개선시킬 수 있다. 실험 결과는 OPT 알고리즘이 GENHIST에 의해 만들어진 히스토그램의 정확도를 크게 개선시킴을 보여준다.

분기 함수를 적용한 분산 최근접 휴리스틱 (A Distributed Nearest Neighbor Heuristic with Bounding Function)

  • 김정숙
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제29권7호
    • /
    • pp.377-383
    • /
    • 2002
  • 외판원 문제는 잘 알려진 NP-완전 문제로, 최적해(optimal value)를 구하는 다양한 알고리즘들이 개발되었다. 그러나 최악의 경우 지수 시간이 걸리므로 수행시간을 줄이는 다양한 방법들이 제안되고 있다. 최근접 휴리스틱 알고리즘은 최적해를 구하는 다른 알고리즘들에 비해 구조가 비교적 간단하다. 따라서 본 논문에서는 외판원 문제(Traveling Salesman Problem, TSP)의 최적해를 구할 수 있는 분기 함수(bounding function)를 적용한 분산 최근접 휴리스틱(nearest neighbor heuristic) 알고리즘을 PVM(Parallel Virtual Machine)에서 제공하는 마스터/슬래이브(master/slave) 모델을 사용하여 설계하고 구현하였다. 먼저 최적해를 찾는 수행 시간을 줄이기 위해 최적화 문제에서 좋은 성능을 보이는 분산 유전 알고리즘(distributed genetic algorithm)을 수행해 얻은 근사해(near optimal)를 초기 분기 함수로 사용한다. 특히 더욱 좋은 근사해를 구하고자 유전 연산자인 돌연변이를 새롭게 변형하여 적용하였다.

Bayesian MCMC를 이용한 저수량 점 빈도분석: I. 사전분포의 적용성 비교 (At-site Low Flow Frequency Analysis Using Bayesian MCMC: I. Comparative study for construction of Prior distribution)

  • 김상욱;이길성;박경신
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1121-1124
    • /
    • 2008
  • 저수분석(low flow analysis)은 수자원공학에서 중요한 분야 중 하나이며, 특히 저수량 빈도분석(low flow frequency analysis)의 결과는 저수(貯水)용량의 설계, 물 수급계획, 오염원의 배치 및 관개와 생태계의 보존을 위한 수량과 수질의 관리에 중요하게 사용된다. 그러므로 본 연구에서는 저수량 빈도분석을 위한 점빈도분석을 수행하였으며, 특히 빈도분석에 있어서의 불확실성을 탐색하기 위하여 Bayesian 방법을 적용하고 그 결과를 기존에 사용되던 불확실성 탐색방법과 비교하였다. 본 논문의 I편에서는 Bayesian 방법 중 사전분포(prior distribution)와 우도함수(likelihood function)의 복잡성에 상관없이 계산이 가능한 Bayesian MCMC(Bayesian Markov Chain Monte Carlo) 방법과 Metropolis-Hastings 알고리즘을 사용하기 위한 여러과정의 이론적 배경과 Bayesian 방법에서 가장 중요한 요소인 사전분포를 구축하고 이를 비교 및 평가하였다. 고려된 사전분포는 자료에 기반하지 않은 사전분포와 자료에 기반한 사전분포로써 두 사전분포를 이용하여 Metropolis-Hastings 알고리즘을 수행하고 그 결과를 비교하여 저수량 빈도분석에 합리적인 사전분포를 선정하였다. 또한 알고리즘의 수행과정에서 필요한 제안분포(proposal distribution)를 적용하여 그에 따른 알고리즘의 효율성을 채택률(acceptance rate)을 산정하여 검증해 보았다. 사전분포의 분석 결과, 자료에 기반한 사전분포가 자료에 기반하지 않은 사전분포보다 정확성 및 불확실성의 표현에 있어서 우수한 결과를 제시하는 것을 확인할 수 있었고, 채택률을 이용한 알고리즘의 효용성 역시 기존 연구자들이 제시하였던 만족스러운 범위를 가지는 것을 알 수 있었다. 최종적으로 선정된 사전분포는 본 연구의 II편에서 Bayesian MCMC 방법의 사전분포로 이용되었으며, 그 결과를 기존 불확실성의 추정방법의 하나인 2차 근사식을 이용한 최우추정(maximum likelihood estimation)방법의 결과와 비교하였다.

  • PDF

딥러닝 알고리즘과 2D Lidar 센서를 이용한 이미지 분류 (Image Classification using Deep Learning Algorithm and 2D Lidar Sensor)

  • 이준호;장혁준
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1302-1308
    • /
    • 2019
  • 본 논문은 CNN (Convolutional Neural Network)와 2D Lidar 센서에서 획득한 위치 데이터를 이용하여 이미지를 분류하는 방법을 제시한다. Lidar 센서는 데이터 정확도, 형상 왜곡 및 광 변화에 대한 강인성 측면에서의 이점으로 인해 무인 장치에 널리 사용되어 왔다. CNN 알고리즘은 하나 이상의 컨볼루션 및 풀링 레이어로 구성되며 이미지 분류에 만족스러운 성능을 보여 왔다. 본 논문에서는 학습 방법에 따라 다른 유형의 CNN 아키텍처들인 Gradient Descent (GD) 및 Levenberg-arquardt (LM)를 구현하였다. LM 방법에는 학습 파라메터를 업데이트하는 요소 중 하나인 Hessian 행렬 근사 빈도에 따라 두 가지 유형이 있다. LM 알고리즘의 시뮬레이션 결과는 GD 알고리즘보다 이미지 데이터의 분류 성능이 우수하였다. 또한 Hessian 행렬 근사가 더 빈번한 LM 알고리즘은 다른 유형의 LM 알고리즘보다 작은 오류를 보여주었다.

모양 기반 이미지 분류를 위한 최적의 우세점 추출 (Extraction of Optimal Interest Points for Shape-based Image Classification)

  • 조성택;엄기현
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권4호
    • /
    • pp.362-371
    • /
    • 2003
  • 이 논문에서는 이미지 데이타베이스에서 모양 특징 기반 이미지 분류와 인덱싱을 위해 객체의 윤곽선 특성을 고려해 임계값을 동적으로 결정하여 최적 우세점을 추출하는 알고리즘을 제안한다. 동적 임계값결정은 원본 모양의 윤곽선 길이 비와 근사화된 다각형의 둘레 길이 비를 알고리즘 수행시 점진적으로 검사하는 방법을 사용한다. 이 알고리즘은 윤곽선 특징을 반영하여 동적인 임계값 검사를 함으로써 의사점 수를 최대한 줄이며 최소 우세점만으로 모양 특징 정보를 추출할 수 있는 장점을 보인다. 제안한 방법은 객체의 윤곽선을 이루는 n개의 점에서 m개의 최적 우세점을 찾는데 평균 O(nlogn)이 걸린다. 최적화 평가는 7가지 서로 다른 특성을 가지는 70개의 합성 모양과 1,100개의 어류 모양에 대해 알고리즘을 적용하고 피 결과에 대해 평가 함수를 구성하여 수행하였다. 최적화율은 실험 모양들에 대해 평균0.92를 보였으며 기존 알고리즘에 대해 약 14% 최적화 성능 개선을 보였다. 제안한 알고리즘을 통해 추출한 모양 특징 정보는 정규화를 통해 이미지 분류와 인덱싱, 유사도 검색에 활용할 수 있다.

조합형 고정점 알고리즘에 의한 신경망 기반 독립성분분석 (Independent Component Analysis Based on Neural Networks Using Hybrid Fixed-Point Algorithm)

  • 조용현
    • 정보처리학회논문지B
    • /
    • 제9B권5호
    • /
    • pp.643-652
    • /
    • 2002
  • 본 연구에서는 신경망 기반 독립성분분석의 분리성능을 개선하기 위해 할선법과 모멘트의 조합형 고정점 알고리즘을 제안하였다. 할선법은 독립성분 상호간의 정보를 최소화하는 목적함수의 근을 근사적으로 구함으로써 계산과정을 단순화하여 좀 더 개선된 분리성능을 얻기 위함이고, 모멘트는 계산과정에서 발생하는 발진을 억제하여 보다 빠른 분리속도를 얻기 위함이다. 이렇게 하면 할선법이 가지는 근사성에 따른 우수성과 과거의 속성을 반영하여 발진을 억제하는 모멘트의 우수성을 동시에 살릴 수 있다. 제안된 알고리즘을 $256\times{256}$ 픽셀의 8개 지문과 $512\times{512}$ 픽셀의 10개 영상으로부터 임의의 혼합행렬에 따라 생성된 복합지문과 복합영상을 각각 대상으로 시뮬레이션 한 결과, 뉴우턴법에 기초한 기존의 알고리즘과 할선법만에 기초한 알고리즘보다 각각 우수한 분리률과 빠른 분리속도가 있음을 확인하였다. 또한 할선법의 이용은 뉴우턴법을 이용한 고정점 알고리즘보다 초기값에도 덜 의존하며, 문제의 규모가 커짐에 따른 비현실적인 분리시간도 해결할 수 있음을 확인하였다.

STFT 기반 영상분석을 이용한 효과적인 잡음제거 알고리즘 (Effective Noise Reduction using STFT-based Content Analysis)

  • 백승인;정수웅;최종수;이상근
    • 전자공학회논문지
    • /
    • 제52권4호
    • /
    • pp.145-155
    • /
    • 2015
  • 디지털 영상 처리 분야에서 잡음 제거는 활발히 연구되어오고 있으며, 최근에는 블록 기반의 잡음 제거 알고리즘이 널리 사용되고 있다. 저계수행렬 근사 기반의 잡음 제거 알고리즘은 WNNM(Weighted Nuclear Norm Minimization)과 블록 기반의 잡음 제거 방법을 적용하여 잡음 제거 방법에 대한 잠재력을 입증했다. 그러나 저계수행렬 근사 기반의 잡음 제거 알고리즘은 영상복원 과정에서 의도치 않은 아티팩트를 발생시킨다. 본 논문에서는 STFT(Short Time Fourier Transform)을 이용해 영상을 분석하여 기존 알고리즘에서 발생하는 아티팩트를 적응적으로 최소화시키는 방법을 제안한다. 성능을 확인하기 위해 다양한 잡음정도를 포함하는 영상에서 실험하였으며, 비교를 통해 제안된 방법이 기존의 잡음 제거 알고리즘보다 효과적으로 잡음을 제거하는 것을 확인했다.

기지국 위치 문제를 위한 목적함수의 최적해 및 근사해 (Optimal and Approximate Solutions of Object Functions for Base Station Location Problem)

  • 손석원
    • 정보처리학회논문지C
    • /
    • 제14C권2호
    • /
    • pp.179-184
    • /
    • 2007
  • 이동 통신 시스템의 설계에 있어서 기지국의 위치를 선정하는 문제는 기본적으로 셀 내부 및 외부의 간접전파에 의한 최소 SIR을 만족하면서 최대한의 사용자를 최소의 기지국에 할당하는 문제로서 NP-hard 이다. 기존에 주로 사용된 목적함수는 창고위치문제에서 사용하던 것으로 CDMA 이동통신 시스템으로 직접 이용하는 단계에서 문제점이 발생한다. 그 문제점들을 해결하는 목적함수와 최적해 및 근사해를 구하는 알고리즘을 제안하고, 그에 따른 시뮬레이션을 하여 본 논문의 제안이 타당성이 있는지 평가 및 분석하였다. 본 논문에서는 기지국의 위치문제를 경험적 탐색방법을 사용하지 않고 혼합정수계획법의 완전해를 이용하여 최적해 및 근사해를 구하였다.

강화학습의 Q-learning을 위한 함수근사 방법 (A Function Approximation Method for Q-learning of Reinforcement Learning)

  • 이영아;정태충
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권11호
    • /
    • pp.1431-1438
    • /
    • 2004
  • 강화학습(reinforcement learning)은 온라인으로 환경(environment)과 상호작용 하는 과정을 통하여 목표를 이루기 위한 전략을 학습한다. 강화학습의 기본적인 알고리즘인 Q-learning의 학습 속도를 가속하기 위해서, 거대한 상태공간 문제(curse of dimensionality)를 해결할 수 있고 강화학습의 특성에 적합한 함수 근사 방법이 필요하다. 본 논문에서는 이러한 문제점들을 개선하기 위해서, 온라인 퍼지 클러스터링(online fuzzy clustering)을 기반으로 한 Fuzzy Q-Map을 제안한다. Fuzzy Q-Map은 온라인 학습이 가능하고 환경의 불확실성을 표현할 수 있는 강화학습에 적합한 함수근사방법이다. Fuzzy Q-Map을 마운틴 카 문제에 적용하여 보았고, 학습 초기에 학습 속도가 가속됨을 보였다.