DOI QR코드

DOI QR Code

Image Classification using Deep Learning Algorithm and 2D Lidar Sensor

딥러닝 알고리즘과 2D Lidar 센서를 이용한 이미지 분류

  • Received : 2019.12.06
  • Accepted : 2019.12.27
  • Published : 2019.12.31

Abstract

This paper presents an approach for classifying image made by acquired position data from a 2D Lidar sensor with a convolutional neural network (CNN). Lidar sensor has been widely used for unmanned devices owing to advantages in term of data accuracy, robustness against geometry distortion and light variations. A CNN algorithm consists of one or more convolutional and pooling layers and has shown a satisfactory performance for image classification. In this paper, different types of CNN architectures based on training methods, Gradient Descent(GD) and Levenberg-arquardt(LM), are implemented. The LM method has two types based on the frequency of approximating Hessian matrix, one of the factors to update training parameters. Simulation results of the LM algorithms show better classification performance of the image data than that of the GD algorithm. In addition, the LM algorithm with more frequent Hessian matrix approximation shows a smaller error than the other type of LM algorithm.

본 논문은 CNN (Convolutional Neural Network)와 2D Lidar 센서에서 획득한 위치 데이터를 이용하여 이미지를 분류하는 방법을 제시한다. Lidar 센서는 데이터 정확도, 형상 왜곡 및 광 변화에 대한 강인성 측면에서의 이점으로 인해 무인 장치에 널리 사용되어 왔다. CNN 알고리즘은 하나 이상의 컨볼루션 및 풀링 레이어로 구성되며 이미지 분류에 만족스러운 성능을 보여 왔다. 본 논문에서는 학습 방법에 따라 다른 유형의 CNN 아키텍처들인 Gradient Descent (GD) 및 Levenberg-arquardt (LM)를 구현하였다. LM 방법에는 학습 파라메터를 업데이트하는 요소 중 하나인 Hessian 행렬 근사 빈도에 따라 두 가지 유형이 있다. LM 알고리즘의 시뮬레이션 결과는 GD 알고리즘보다 이미지 데이터의 분류 성능이 우수하였다. 또한 Hessian 행렬 근사가 더 빈번한 LM 알고리즘은 다른 유형의 LM 알고리즘보다 작은 오류를 보여주었다.

Keywords

References

  1. LeCun, Yann, et al., "Backpropagation applied to handwritten zip code recognition," Neural computation, vol.1, no.4, pp.541-551, 1989. DOI: 10.1162/neco.1989.1.4.541
  2. LeCun, Yann, et al., "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol.86, no.11, pp.2278-2324, 1998. DOI: 10.1109/5.726791
  3. E. S. Park, C. Y. Jang, B. H. Im, H. L. Kim, "Real-time Traffic Signs Recognition using MSERs and CNN," Journal of Institute of Control, Robotics and Systems, Vol.23, No.6, pp.489-496, 2017. DOI: 10.5302/J.ICROS.2017.17.0049
  4. Y. Y. Lee, S. M. Park, I. H. Jang, T. H. Kim, G. B. Sim, "CNN-based Shoe-upper Pattern Recognition and Generation of Adhesive Point," Journal of Institute of Control, Robotics and Systems, Vol.23, No.9, pp.725-731, 2017. DOI: 10.5302/J.ICROS.2017.17.0109
  5. Dae-Hun Kim, Jong-Eun Ha, "Multi-Lane Detection using Convolutional Neural Networks and Transfer Learning," Journal of Institute of Control, Robotics and Systems, Vol.23, No.9, pp.718-724, 2017. DOI: 10.5302/J.ICROS.2017.17.0107
  6. Jun Hoo Cho, Chang Ho Kang, Chan Gook Park, "Convolutional Neural Network-based Automatic Target Recognition Algorithm in SAR Image," Journal of Institute of Control, Robotics and Systems, vol.23, No.8, pp.644-649, 2017. DOI: 10.5302/J.ICROS.2017.17.0100
  7. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, "Imagenet classification with deep convolutional neural networks," in Advances in neural information processing systems, Vol.25, No.2 pp.1097-1105, 2012. DOI: 10.1145/3065386
  8. Karen Simonyan and Andrew Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409. 1556, 2014.
  9. Christian Szegedy et al., "Going deeper with convolutions," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp.1-9, 2015. DOI: 10.1109/CVPR.2015.7298594
  10. Kaiming He et al., "Deep residual learning for image recognition," In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.770-778, 2016. DOI: 10.1109/CVPR.2016.90
  11. Ross Girshick et al., "Rich feature hierarchies for accurate object detection and semantic segmentation," In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.580-587, 2014. DOI: 10.1109/CVPR.2014.81
  12. Ross Girshick, "Fast r-cnn," In Proceedings of the IEEE international conference on computer vision, pp.1440-1448, 2015. DOI: 10.1109/ICCV.2015.169
  13. Brent Schwarz, "LIDAR: Mapping the world in 3D," Nature Photonics, vol.4, no.7, pp.429-430, 2010. DOI: 10.1038/nphoton.2010.148
  14. Laura Leal-Taixe, Cristian Canton-Ferrer, and Konrad Schindler, "Learning by Tracking: Siamese CNN for Robust Target Association," The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp.33-40, 2016.
  15. Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, "Deep learning," nature, vol.521, no.7553, pp.436-444, 2015. DOI: 10.1038/nature14539
  16. Leon Bottou, "Large-scale machine learning with stochastic gradient descent," In Proceedings of COMPSTAT'2010. Physica-Verlag HD, pp.177-186, 2010. DOI: 10.1007/978-3-7908-2604-3_16
  17. Ananth Ranganathan, "The levenberg-marquardt algorithm," Tutorial on LM algorithm, vol.11, no.1, pp.101-110, 2004. DOI: 10.1007/978-3-7908-2604-3_16
  18. Djork-Arne Clevert, Thomas Unterthiner, and Sepp Hochreiter, "Fast and accurate deep network learning by exponential linear units (elus)," arXiv preprint arXiv:1511.07289 (2015).
  19. Fatma Ouled Saad et al., "Quadrupole method: A new approach for solving the direct problem of electrical resistance tomography," Journal of King Saud University-Science, vol.29, no.3, pp. 360-370, 2017. DOI: 10.1016/j.jksus.2016.08.007
  20. Martin T Hagan and Mohammad B. Menhaj, "Training feedforward networks with the Marquardt algorithm," IEEE transactions on Neural Networks, vol.5, no.6, pp.989-993, 1994. DOI: 10.1109/72.329697