• Title/Summary/Keyword: 근권온도

Search Result 75, Processing Time 0.028 seconds

Appropriate Root-zone Temperature Control in Perlite Bag Culture of Tomato during Winter Season (저온기 토마토 펄라이트 자루재배시 최적 근권온도 조절 방법)

  • Kim, Sung-Eun;Sim, Sang-Youn;Lee, Sang-Don;Kim, Young-Shik
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.783-789
    • /
    • 2010
  • The effective method for heating root-zone during winter season was studied in the aspects of growth, yield and economics for tomato ($Solanum$ $lycopersicum$) in perlite bag culture. There were four root-zone heating treatments: two hours heating from one hour before to one hour after sunrise, four hours from two hours before to two hours after sunrise, 15 hours after sunset, and no heating. The growth characteristics of the upper parts of plants were not significantly different among the treatments, but root volume increased with longer heating of the root zone. The Plant Development Index, using stem diameter and the length between growing tip and the upper flowering truss, showed relation between yield per cluster and growth pattern. The treatment heating for four hours was the most economic in terms of growth and yield of tomato.

Effect of Root-zone Temperature and Ratios of $\textrm{NO}_3$-N to $\textrm{NH}_4$-N in the Nutrient Solution on the Growth and Yield of Hydroponically Grown Pepper Plant (근권온도와 양액중의 $\textrm{NO}_3$-N/$\textrm{NH}_4$-N 비율이 양액재배 고추의 생육ㆍ수량에 미치는 영향)

  • 정현복
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.152-158
    • /
    • 1995
  • This experiment was undertaken in order to clarify effect of NO$_3$-N/NH$_4$-N ratios(NO$_3$/NH$_4$ : 10:0, 8:2) in the nutrient solution on growth, yield, photosynthetic rate, relative concentration of chlorophyll and root activity of hydroponically grown pepper plants at three different root- zone temperatures of 18$^{\circ}C$, 22$^{\circ}C$ and 26$^{\circ}C$. Plant height, leaf number, stem diameter, fresh and dry weight of leaf and root were no effect in by three root- zone temperatures. However, leaf number, stem diameter, fresh and dry weight of leaf and stem, dry weight of root at 18$^{\circ}C$, 22$^{\circ}C$ and $25^{\circ}C$ increased when NH$_4$-N was added to the solution. Under root-Bone temperatures of 18$^{\circ}C$, 26$^{\circ}C$ condition, fruit length were longer by the addition of NH$_4$-N. Fruit number and yield increased by the addition of NH$_4$-N at three root-zone temperatures. Photosynthetic rate decreased as root - zone temperature increased. Under root-zone temperatures of 18$^{\circ}C$, 22$^{\circ}C$ and 26$^{\circ}C$ condition, photosynthetic rate increased significantly by the addition of NH$_4$-N. Chlorophyll content of plants increased at 22$^{\circ}C$. Under root-zone temperatures of 18$^{\circ}C$, 22$^{\circ}C$ and 26$^{\circ}C$ condition, chlorophyll content of plants increased by the addition of NH$_4$-N. Root activity of increased at 26$^{\circ}C$ Under root-Bone temperatures of 18$^{\circ}C$, 22$^{\circ}C$ and 26$^{\circ}C$ condition, root activity increased by the addition of NH$_4$- N.

  • PDF

Effect of Root Zone Temperature during the Night on the Growth and yield of Perlite Cultured Tomato in Winter (겨울철 토마토 2단말식 펄라이트경에서 야간 근권 온도가 토마토의 생육 및 수량에 미치는 영향)

  • 이한철;강경희;권기범;최영하
    • Journal of Bio-Environment Control
    • /
    • v.10 no.1
    • /
    • pp.30-35
    • /
    • 2001
  • This experiment was undertaken to investigate the effect of root zone temperature during the night on absorption of mineral nutrients, growth, and fruit yield of the truss-limited hydroponic tomatoes in winter. The root zone temperature was either controlled to 10, 15, 20, $25^{\circ}C$, or left uncontrolled at ambient temperatures. Temperature of the covered beds rose as root zone temperature was raised, but it in all treatments was less than 3$^{\circ}C$ higher than that in the control. Raising root zone temperature, except $25^{\circ}C$, showed positive effect on plant height, leaf length, stem diameter, and plant fresh and dry weight, but not on T/R ratio which was the greatest in the control. Root activity in all treatments except $25^{\circ}C$ increased as compared to the control. Mean fruit weight, fruit count per plant, and fruit yield were the greatest in 2$0^{\circ}C$ treatment. Root zone temperature did not significantly affect the contents of total nitrate and magnesium in leaves, stems and roots. Concentrations of phosphate and calcium increased in leaves and stems, but decreased in roots as root zone temperature increased. Overall, 2$0^{\circ}C$ treatment gave the greatest growth and energy efficiency.

  • PDF

Growth and Berry Quality of 'Kyoho' Grapes in Double Cropping System as Affected by Root Zone Heating and CO2 Enrichment in Plastic Greenhouse ('거봉' 포도 2기작 재배 시 근권 가온 및 CO2 시용이 생장 및 과실 품질에 미치는 영향)

  • Oh, Sung Do;Kim, Yong Hyeon;Choi, Dong Geun
    • Horticultural Science & Technology
    • /
    • v.19 no.3
    • /
    • pp.367-372
    • /
    • 2001
  • 'Kyoho' grape (Vitis labruscana L.) has currently cropped twice a year in plastic greenhouses. However, there are problems with low fruit quality in the second cropping owing to low temperatures and short photoperiods. This experiment was conducted to investigate the effect of root zone heating and $CO_2$ enrichment in plastic greenhouse on the vine growth and fruit quality of 'Kyoho' grape in double cropping system. The internode length of shoots, leaf area and leaf dry weight at the treatment of soil heating near root zone was significantly different regardless of $CO_2$ enrichment. There were no significant differences in fruit bunch and berry weight, titratable acidity, coloration degree and berry shattering among the treatments, but the soluble solids significantly increased by root zone heating. Photosynthetic rate increased with increasing $CO_2$ concentration from 300 to $800{\mu}mol{\cdot}mol^{-1}$ in sunny day, whereas it didn't increase in cloudy day regardless of $CO_2$ enrichment.

  • PDF

Effects of Root-Zone Temperature on Antioxidative Enzyme Activities, Mineral Contents, and Growth of Grafted Watermelon Plug Seedlings (근권온도가 수박성형묘의 생육, 무기성분 흡수 및 항산화 효소활성에 미치는 영향)

  • Huh, Moo-Ryong;Kim, Young-Suk;Seo, Young-Guk;Park, Joong-Choon
    • Horticultural Science & Technology
    • /
    • v.18 no.6
    • /
    • pp.783-786
    • /
    • 2000
  • This study was carried out to examine the effect of root-zone temperatures on seedling growth, mineral contents and antioxidative enzyme activities of grafted watermelon. The grafted watermelon seedlings were grown in greenhouse bed for 20 days at root-zone day temperatures of 10, 15, $25^{\circ}C$ while night temperature was maintained at $10^{\circ}C$. Growth such as shoot height, leaf length, leaf number, stem diameter, and fresh and dry weights increased as increasing root-zone temperatures, and leaf area with $25^{\circ}C$($52.79mm^2$) was two times that of control($21.50mm^2$). As increasing the root-zone temperatures, Mn, Ca, Fe contents increased, K, P, Mg were non significant, and Na decreased. The activities of ascorbate peroxidase(APX) and guaiacol peroxidase(GPX) known as antioxidative enzyme were higher at $10^{\circ}C$ than $25^{\circ}C$.

  • PDF

Effect of Root Zone Cooling Using the Air Duct on Temperatures and Growth of Paprika During Hot Temperature Period (공기순환 덕트를 이용한 근권부 냉방이 고온기 파프리카 재배에서 온도와 생육에 미치는 영향)

  • Choi, Ki Young;Jang, Eun Ji;Rhee, Han Cheol;Yeo, Kyung-Hwan;Choi, Eun Young;Kim, Il Seop;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.243-251
    • /
    • 2015
  • This study aimed to determine the effects of root zone cooling using air duct on air temperature distribution and root zone and leaf temperatures of sweet pepper (Capsicum annum L. 'Veyron') grown on coir substrate hydroponic system in a greenhouse. When the air duct was laid at the passage adjacent the slab, the direction of air blowing was upstream at $45^{\circ}$. The cooling temperature was set at $20^{\circ}C$ for day and $18^{\circ}C$ for night. For cooing timing treatments, the cooling air was applied at all day (All-day), only night time (5 p.m. to 1 a.m.; Night), or no cooling (Control). The air temperature inside the greenhouse at a height of 40 and 80cm above the floor, and substrate and leaf temperatures, fruit characteristics, and fruit ratio were measured. Under the All-day treatment, the air temperature was decreased about $4.4{\sim}5.1^{\circ}C$ at the height of 40cm and $2.1{\sim}3.1^{\circ}C$ at the height of 80cm. Under the Night treatment, the air temperature was decreased about $3.4{\sim}3.8^{\circ}C$ at the height of 40cm and $2.2{\sim}2.7^{\circ}C$ at the height of 80cm. The daily average temperature in the substrate was in the order of the Control ($27.7^{\circ}C$) > Night ($24.1^{\circ}C$) > All-day ($22.8^{\circ}C$) treatment. Cooling the passage with either upstream blowing at $45^{\circ}$ or horizontal blowing at $180^{\circ}$ was effective in lowering the air temperature at a height of 50cm; however, no difference at a height of 100cm. Cooling the passage with perpendicular direction at $90^{\circ}$ was effective in lowering the air temperature at the height between 100 and 200cm above the floor; however, no effect on the temperature at the height of 50cm. A greater decrease in leaf temperature was found at 7 p.m. than that at 9. a.m. under both All-day and Night treatments. Fresh weight partitioning of fruit was in the order of the All-day (48.6%) > Night (45.6%) > Control (24.4%) treatment. A higher fruit production was observed under the All-day treatment, in which the accumulated average temperature was the lowest, and it may have been led to a higher proportion of photosynthate distributed to fruit than other treatments.

Effect of Root Zone Temperature on the Induction of Inflorescence of Phalaenopsis in Summer (하절기 근권 온도가 팔레놉시스의 화경 발생에 미치는 영향)

  • Lee, Dong-Soo;Lee, Young-Ran;Yae, Byeong-Woo
    • Horticultural Science & Technology
    • /
    • v.29 no.1
    • /
    • pp.10-15
    • /
    • 2011
  • The influence of root zone temperature to the induction of inflorescence and growth of Phalaenopsis was investigated. Root zone temperatures were 15, 20, 25, and $30^{\circ}C$, while the air temperature was kept over $28^{\circ}C$ during three months. $CO_2$ uptake, fresh weight, dry weight and branched root number of Phalaenopsis were highest at $25^{\circ}C$ and lowest at $15^{\circ}C$. But, the anthocyanin content was highest at $15^{\circ}C$ and lowest at $25^{\circ}C$. Inflorescence was not induced by root zone cooling temperature below $25^{\circ}C$ for three months. The concentrations of K, Ca and Mg in leaves were changed according to the root zone temperature, but those of N and P were not changed. K content was high at $20^{\circ}C$, whereas Ca and Mg contents were high at $25^{\circ}C$ root zone temperature. This study indicates that Phalaenopsis perceives temperature by shoot and the optimum root-zone temperature for the vegetative growth is $25^{\circ}C$.

Effect of Root Zone Temperature on the Growth and the Leaf Mineral Contents of Apple(Malus domestica Borkh) Trees (근권(根圈) 온도환경(溫度環境)이 사과나무의 생육(生育) 및 엽중(葉中) 무기성분함량(無機成分含量)에 미치는 영향)

  • Park, Jin-Myeon;Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.378-384
    • /
    • 1996
  • This study was conducted to investigate the influence of root zone temperature on the growth of shoot and root and the mineral contents in leaf of 'Fuji/M26' apple tree. Shoot growth and enlargement of trunk girth increased linearly with increasing root zone temperature. Fresh and dry weight of root reached maximum at $35^{\circ}C$. Water content of root increased with rising root zone temperature. The chlorophyll content of leaves showed insignificant difference with root zone temperature. Leaf water potential was high at $35^{\circ}C$ at 15 day after treatment but 60 day after treatment this was decreased. The nitrogen content of the leaves was not different by root zone temperature whereas the phosphorus content of the leaves was increased at $30^{\circ}C$ in 1993 and at $25^{\circ}C$ in 1994. The potassium content of the leaves reached a maximum at $30^{\circ}C$ in 1993 and $25^{\circ}C$ in 1994. In 1994 the calcium content of the leaves was increased with rising root zone temperature and with lengthening duration of treatment but no such differences were found in 1993. The magnesium content of the leaves was highest at $25^{\circ}C$ in 1993 and at $20^{\circ}C$ in 1994. The nitrogen and potassium content of the roots were increased linearly with root zone temperature in 1993 and 1994 and the magnesium and phosphorus content of the roots were high at $35^{\circ}C$ in 1994 but no such differences were found in the calcium content of the roots.

  • PDF

Root-zone Temperature Control of Tomato Plant Cultivated in Perlite Bag during Summer Season (고온기 펄라이트 자루재배시 최적 근권온도 조절방법)

  • Kim, Sung-Eun;Kim, Young-Shik;Sim, Sang-Youn
    • Horticultural Science & Technology
    • /
    • v.29 no.2
    • /
    • pp.102-109
    • /
    • 2011
  • This research was conducted to establish efficient methods to control root-zone temperature of tomato plant when cultivated in perlite bag during the summer season. Tomato plants were grown with four selected treatments; covering irrigation pipe by aluminum insulation material (Insulate), discarding nutrient solution inside the irrigation line before each irrigation (Discard), skipping irrigation for two hours from 13:00 to 15:00 (Skip), or no treatment as a control (Non). Based on the analysis of plant development index, all plants with selected treatments grew more vigorous and vegetative in similar growth patterns. The discard treatment exhibited the best root-zone temperature control among the treatments. The discard treatment also resulted in the best root growth and above-ground growth, followed by skip, Insulate and Non. The total yields were obtained by the order of Insulate, Discard, Non and Skip. However the marketable yield was obtained by the order of Discard, Insulate, Skip and Non. The net incomes treated with Discard and Insulate were 9,687,600 and 9,396,000 Korean won per hectare, respectively, exhibiting higher incomes than that of Non. Therefore, it was concluded that insulation of the irrigation pipe and discarding nutrient solution inside the pipe before each irrigation were the most desirable and economical methods in terms of costs and yields.

Effect of Rootzone Temperature on Ca-45 Uptake and Translocation in Hydroponically Grown Melon(Cucumis meol L.) (근권온도(根圈溫度)가 양액재배(養液栽培) 참외의 Ca-45 흡수(吸收) 및 전유(轉流)에 미치는 영향(影響))

  • Jang, Byoung-Choon;Im, Jeong-Nam;Chun, Jae-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.4
    • /
    • pp.364-369
    • /
    • 1992
  • This study was carried out to investigate the effect of rootzone temperature on uptake and translocation of Ca-45 in melon(Cucumis meol L. var ; Sineunchun and Keumssaragi) treated radioisotope(Ca-45) for 24 hours in hydroponics which controlled the nutrient solution temperature as $15^{\circ}C$, $22^{\circ}C$, and $32^{\circ}C$. In two varieties of melon, content and translocation of Ca-45 were high in the stems as compared with the leaves and the fruits and continued to increase with increase in temperature of the hydroponics. Content and translocation of Ca-45 in the leaves and the fruits of Sineunchun variety continued to increase with increase in the temperature, but there was rather decrease in Keumssaragi variety at $32^{\circ}C$. Most Ca-45 absorbed was translocated to the shout apices, and great amount was determined in the fruits as compared with the leaves.

  • PDF