• Title/Summary/Keyword: 극한상태

Search Result 308, Processing Time 0.024 seconds

Evaluation of Allowable Criteria in First-Passage Probability Method for Caisson Sliding of Vertical Breakwater (직립방파제의 케이슨 활동에 대한 최초통과확률법의 허용기준 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.317-326
    • /
    • 2013
  • Probabilistic design methods can consider uncertainties of design variables and are widely used in the design of vertical breakwaters. The probabilistic design methods include a partial safety factor method, reliabilitybased design method, and performance-based design method. Especially the performance-based design method calculates the accumulated sliding distance during the lifetime of the breakwater or during a design storm. Recently a time-dependent performance-based design method has been developed based on the first-passage probability of individual sliding distance during a design storm. However, because the allowable criteria in the first-passage probability method are not established, the stability of structures cannot be quantitatively evaluated. In this study, the allowable first-passage probabilities for two limit states are proposed by calculating the first-passage probabilities for the cross-sections designed with various water depths and characteristics of extreme wave height distributions. The allowable first-passage probabilities are proposed as 5% and 1%, respectively, for the repairable limit state (allowable individual sliding distance of 0.03 m) and ultimate limit state (allowable individual sliding distance of 0.1 m). The proposed criteria are applied to the evaluation of the effect of wave-height increase due to climate change on the stability of the breakwater.

Analysis of Design Live Load of Railway Bridge Through Statistical Analysis of WIM Data for High-speed Rail (고속철도 WIM 데이터에 대한 통계분석을 통한 철도교량 설계활하중 분석)

  • Park, Sumin;Yeo, Inho;Paik, Inyeol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.589-597
    • /
    • 2015
  • In this paper, the live load model for the design of high-speed railway bridge is analyzed by statistic and probabilistic methods and the safety level that is given by the load factors of the load combination is analyzed. This study is a part of the development of the limit state design method for the railway bridge, and the train data collected from the Gyeongbu high-speed railway for about one month are utilized. The four different statistical methods are applied to estimate the design load to match the bridge design life and the results are compared. In order to examine the safety level that the design load combination of the railway bridge gives, the reliability indexes are determined and the results are analyzed. The load effect from the current design live load for the high-speed rail bridge which is 0.75 times of the standard train load is came out greater than at least 30-22% that from the estimated load from the measured data. If it is judged based on the ultimate limit state, there is a possibility of additional reduction of the safety factors through the reliability analysis.

Dynamic Soil Properties of Frozen and Unfrozen Soils from Terra Nova Bay in Eastern Antarctica (동남극 테라노바만 흙 시료의 동결 및 비동결 상태에서의 동적특성 평가)

  • Kim, Jae-Hyun;Kwon, Yeong-Man;Park, Keunbo;Kim, YoungSeok;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.37-47
    • /
    • 2017
  • The geotechnical characteristics of frozen ground is one of the key design issues for the construction of infrastructure in cold region. In this study, the dynamic properties (shear modulus and damping ratio) of frozen and unfrozen soils sampled from Terra Nova Bay located in eastern Antarctica, where Jang Bogo station was built, were investigated using Stokoe-type resonant column test (RC). In order to freeze the reconstituted soil specimen, the RC testing equipment was modified by adding a cooling system. A series of resonant column tests were performed in frozen and unfrozen soils with various soil densities and temperatures. The shear modulus (G) and damping ratio (D) of soil frozen at $-7^{\circ}C$ were compared with those of unfrozen soil. In addition, the effect of temperature rise on the maximum shear modulus ($G_{max}$) and damping ratio was experimentally investigated. This study has significance in that the difference of dynamic soil properties between frozen and unfrozen soils and the effect of temperature rise on frozen soil were identified.

Features of Critical Tensile Stresses in Jointed Concrete Pavements under Environmental and Vehicle Loads (환경하중과 차량하중에 의한 줄눈콘크리트포장의 극한인장응력 특성 분석)

  • Kim, Seong-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.449-456
    • /
    • 2007
  • This research was conducted to analyze the features of the critical tensile stresses at the top and bottom of the concrete slab in the jointed concrete pavement (JCP) when subjected to both the environmental and vehicle loads. First, the stress distribution in JCP was analyzed when the system was subjected to only the environmental loads or the vehicle loads by using the finite element model of JCP. Then, the stresses were analyzed when the system was subjected to the environmental and vehicle loads at the same time. From this study, it was found that the critical tensile stresses at the slab bottom under the vehicle loads were almost constant regardless of the loading positions once the loads were applied at the positions having some distance from the transverse joint. The critical tensile stresses at the slab bottom could be obtained using the model consisting of normal springs for underlying layers by adding the critical stresses due to the environmental loads and the vehicle loads for the curled-down slab, and by subtracting the critical stress due to the environmental loads from that due to the vehicle loads for the curled-up slab. The critical tensile stresses at the top of the slab could be obtained using the model consisting of tensionless springs for underlying layers by adding the critical stress due to the environmental loads and the stress at the middle of the slab under the vehicle loads applied at the joint for the curled-up slab. An alternative to obtain the critical stresses at the top of the slab for the curled-up slab was to use the critical stresses under only the environmental loads obtained from the model having normal springs for underlying layers.

Study on the Vertical Pile Capacity of Base-grouted Pile (선단 하부지반 그라우팅된 개단강관말뚝의 연직 지지력에 관한 연구)

  • 정두환;최용규;정성교
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.165-180
    • /
    • 1999
  • Static load tests were performed for open-ended piles, closed-ended piles, piles with grouted toe, and base-grouted piles by using calibration chamber. Then vertical bearing capacities determined from load tests were compared with each other. The stability of base-grouted pile during a simulated seaquake was investigated by changing the penetration depth. Also, static load tests and seaquake tests for 2-piles and 4-piles group were performed. The bearing capacity of the pile grouted inside the toe was 11.2~30.8% less than that of open-ended pile because of reduction of base resistance due to disturbance of base soil under pile toe. The bearing capacity of a base-grouted pile was 23.8~33.9% more than that of an open-ended pile and was similar to that of a closed-ended pile. The bearing capacity of base-grouted group pile was increased ; the bearing capacity of base-grouted 2-piles group increased 14.6~31.8% compared to that of open-ended 2-piles group, and that of base-grouted 4-piles group increased 15.3~22.4% compared to that of open-ended 4-piles group. During the simulated seaquake in deep sea, stability of base-grouted pile was found to be dependent on the pile penetration depth. During seaquake motion, single long base-grouted pile longer than 20m was stable and short base-grouted pile shorter than 12m failed. But relatively long base-grouted pile longer than 12m kept mobility state. Bearing capacity of base-grouted group pile with penetration depth less than 7m was degraded a little bit ; so, base-grouted group pile could maintain mobility condition.

  • PDF

The Description of Near-Critical Region for the Non-Ideal Inter-Particle Interacting Molecules such as n-Alkane(linear) and Alkyl-Amine(dipolar) by using Generalized van der Waals Equation of States (일반화된 반데르발스 상태방정식을 이용한 비이상적 입자 상호작용을 갖는 알칸(선형성) 및 알킬 아민류(쌍극자성)에 대한 임계 영역 특성분석)

  • Kim, Jibeom;Lee, Sukbae;Jeon, Joonhyeon
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.224-231
    • /
    • 2010
  • In GvdW EOS, a recently presented paper, shows that the characteristic status for spherical non-linear particle, of which the mutual behavior is known to be vdWf(van der Waals force) only, could be described well enough in the critical region. However, in current papers, analysis has not been done on GvdW about whether it is accurate or not, even for the particles in the linear form or those with the additional mutual behavior such as static-electricity, so there's some argument about the wide use of that. Therefore, in this paper, for the simulation in the critical region of Normal-alkane group(R=methane, ethane, propane, butane) which are the particles that has a linear charateristic and Normal-amine group($RNH_2$, R=methyl-, ethyl-, propyl-amine) where static-electricity is extremely shown, GvdW parameter values about these particles are defined, and based on this simulation, we compared results to the current EOS presented recently, and analyzed them. Through the simulation, it was shown that in case of Normal-alkane group and Normal-amine group molecules, GvdW presents an accurate critical region characteristic which is far more close to the measurement compared to current EOSs. Especially for butane with big amount in molecules, we found out that only GvdW EOS can reach close enough to the critical point.

Steady-state Thermal Analysis of 5 kW IPMSM Using Thermal Equivalent Circuit (열등가회로를 이용한 5 kW 급 영구자석 동기전동기의 정상상태 열 특성 해석)

  • Kim, Tae Hyun;Yoo, Young Bum;Na, Jong Seung;Ryu, Kyongtae;Moon, Yoon Jae;Lee, Jae Heon;Lee, Ju;Park, Chan Bae;Moon, Seung Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.951-956
    • /
    • 2014
  • Steady-state thermal analysis was performed on a thermal equivalent circuit to determine the heat generation during operation of an interior permanent magnet synchronous motor (IPMSM). New machines must be compact and light and produce high torque density under extreme environmental conditions. Thermal analysis of an IPMSM is particularly important because excessive heat generated from the core and magnet reduces the IPMSM's output and has adverse effects on the durability. Therefore, steady-state thermal analysis of an IPMSM was performed for changes in the design variables using a thermal equivalent circuit. The changed variables were the axis length and thickness of the housing. The results of this method were compared with those of the finite element method to verify the accuracy and reliability.

Seismic Fragility Analysis of Rahmen-type Continuous Bridge Supported by High Piers (고교각으로 지지된 라멘형 연속교의 지진취약도 분석)

  • Kang, Pan-Seung;Hong, Ki-Nam;Yeon, Yeong-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.84-95
    • /
    • 2019
  • This paper reports the process of seismic fragility analysis for the rahman-type continuous bridge system. The target structure was the five span highway bridge with maximum pier hight of 72m. OpenSees software was used for the nonlinear time history analysis. In this study, 50 ground motions are considered for nonlinear time history analysis. For each ground motion, PGA was scaled from 0.1g to 2.0g with intervals of 0.1g in order to consider a wide range of the seismic intensity measure. In addition, yield displacement and ultimate displacement of each pier were calculated through section analysis. Based on the result of non linear time history analysis and section analysis, damage condition of target bridge was classified according to the definition of damage condition proposed by Barbat et al. As a result, it was predicted that Extensive Damage occurred at P1 when 0.731 g earthquake occurred in the longitudinal direction. Based on the seismic fragility analysis results, it is found that the probability of occurrence of Extensive Damage in the 4,800 - year period earthquake was about 4.2%. Therefore the target bridge has enough safety for earthquake.

The structural analysis and design methods considering joint bursting in the segment lining (조인트 버스팅을 고려한 세그먼트 라이닝 구조해석 및 설계방법)

  • Kim, Hong-Moon;Kim, Hyun-Su;Jung, Hyuk-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1125-1146
    • /
    • 2018
  • Segment lining applied to the TBM tunnel is mainly made of concrete, and it requires sufficient structural capacity to resist loads received during the construction and also after the completion. When segment lining is design to the Limit State Design, both Ultimate Limit State (ULS) and Service Limit State (SLS) should be met for the possible load cases that covers both permanent and temporary load cases - such as load applied by TBM. When design segment lining, it is important to check structural capacity at the joints as both temporary and permanent loads are always transferred through the segment joints, and sometimes the load applied to the joint is high enough to damage the segment - so called bursting failure. According to the various design guides from UK (PAS 8810, 2016), compression stress at the joint surface can generate bursting failure of the segment. This is normally from the TBM's jacking force applied at the circumferential joint, and the lining's hoop thrust generated from the permanent loads applied at the radial joint. Therefore, precast concrete segment lining's joints shall be designed to have sufficient structural capacity to resist bursting stresses generated by the TBM's jacking force and by the hoop thrust. In this study, bursting stress at the segment joints are calculated, and the joint's structural capacity was assessed using Leonhardt (1964) and FEM analysis for three different design cases. For those three analysis cases, hoop thrust at the radial joint was calculated with the application of the most widely used limit state design codes Eurocode and AASHTO LRFD (2017). For the circumferential joints bursting design, an assumed TBM jack force was used with considering of the construction tolerance of the segments and the eccentricity of the jack's position. The analysis results show reinforcement is needed as joint bursting stresses exceeds the allowable tensile strength of concrete. This highlights that joint bursting check shall be considered as a mandatory design item in the limit state design of the segment lining.

Effective Strength of 3-Dimensional Concrete Strut (3차원 콘크리트 스트럿의 유효강도)

  • Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.403-413
    • /
    • 2014
  • For the reliable design of the structural concrete by the strut-tie model approaches of current design codes, the effective strengths of concrete struts must be determined with sufficient accuracy. Many values and equations for the effective strengths have been suggested until now. As those are for the two-dimensional concrete struts, however, it is inappropriate to employ them in the strut-tie model designs of three-dimensional structural concretes. In this study, an approach, that determines the effective strengths of three-dimensional concrete struts consistently and accurately by reflecting the state of 3-dimensional stresses, the 3-dimensional failure criteria of concrete, the degree of cracks (or tensile strains of reinforcing bars crossing the struts), the strut's longitudinal length, the deviation angle between strut orientation and compressive principal stress flow, compressive strength of concrete, and the degree of concrete confinement by reinforcing bars, is proposed. To examine the validity of the proposed approach, the ultimate strength analyses of 115 reinforced concrete pile caps tested to failure by previous investigators were conducted by the ACI 318-11's strut-tie model approach with the existing and proposed effective strengths of concrete struts.