• Title/Summary/Keyword: 극지연구소

Search Result 108, Processing Time 0.025 seconds

Application of Sedimentary Neodymium Isotopes to the Reconstruction of the Arctic Paleoceanography (퇴적물의 네오디뮴 동위원소 비를 활용한 북극 고환경 복원)

  • Kwangchul Jang;Seung-Il Nam
    • Ocean and Polar Research
    • /
    • v.45 no.2
    • /
    • pp.89-102
    • /
    • 2023
  • Climate and environmental changes in the Arctic Ocean due to global warming have been linked to extreme climate change in mid-latitude regions, including the Korean Peninsula, requiring a better understanding of the Arctic climate system based on the paleo-analog. This review introduces three paleoenvironmental research cases using neodymium isotopes (143Nd/144Nd, εNd) measured on two different fractions of marine sediments: silicate-bound 'detrital' and Fe-Mn oxide-dominated 'authigenic' fractions. In the first case, detrital εNd in core HH17-1085-GC on the continental shelf off northern Svalbard was used for tracing changes in sediment provenance and associated glacier behavior over the last 16.3 ka. The second case showed the potential use of authigenic εNd as a quasi-conservative water mass tracer. Three prominent εNd peaks and troughs observed in core PS72/410-1 from the Mendeleev Ridge in the western Arctic Ocean over the past 76 ka suggested episodic meltwater discharge events during 51~46, 39~35 and 21~13 ka BP. The last case proposed the use of the difference between authigenic and detrital εNd as a proxy for reconstructing glacier fluctuation. The idea is based on the assumption that enhanced glacial erosion during glacier advances can supply sufficient freshly-exposed rock substrate for incongruent weathering, potentially leading to greater isotopic decoupling between bedrock and dissolved weathering products as recorded in detrital and authigenic εNd, respectively. Thus, it would be worthwhile to take advantage of sedimentary εNd to improve our understanding of past environmental changes in polar regions.

Classification of bearded seals signal based on convolutional neural network (Convolutional neural network 기법을 이용한 턱수염물범 신호 판별)

  • Kim, Ji Seop;Yoon, Young Geul;Han, Dong-Gyun;La, Hyoung Sul;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.235-241
    • /
    • 2022
  • Several studies using Convolutional Neural Network (CNN) have been conducted to detect and classify the sounds of marine mammals in underwater acoustic data collected through passive acoustic monitoring. In this study, the possibility of automatic classification of bearded seal sounds was confirmed using a CNN model based on the underwater acoustic spectrogram images collected from August 2017 to August 2018 in East Siberian Sea. When only the clear seal sound was used as training dataset, overfitting due to memorization was occurred. By evaluating the entire training data by replacing some training data with data containing noise, it was confirmed that overfitting was prevented as the model was generalized more than before with accuracy (0.9743), precision (0.9783), recall (0.9520). As a result, the performance of the classification model for bearded seals signal has improved when the noise was included in the training data.

Assessment of Antarctic Ice Tongue Areas Using Sentinel-1 SAR on Google Earth Engine (Google Earth Engine의 Sentienl-1 SAR를 활용한 남극 빙설 면적 변화 모니터링)

  • Na-Mi Lee;Seung Hee Kim;Hyun-Cheol Kim
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.285-293
    • /
    • 2024
  • This study explores the use of Sentinel-1 Synthetic Aperture Radar (SAR), processed through Google Earth Engine (GEE), to monitor changes in the areas of Antarctic ice shelves. Focusing on the Campbell Glacier Tongue (CGT) and Drygalski Ice Tongue (DIT),the research utilizes GEE's cloud computing capabilities to handle and analyze large datasets. The study employs Otsu's method for image binarization to distinguish ice shelves from the ocean and mitigates detection errors by averaging monthly images and extracting main regions. Results indicate that the CGT area decreased by approximately 26% from January 2016 to January 2024, primarily due to calving events,while DIT showed a slight increase overall,with notable reduction in recent years. Validation against Sentinel-2 optical images demonstrates high accuracy,underscoring the effectiveness of SAR and GEE for continuous, long-term monitoring of Antarctic ice shelves.

Phytoplankton Variability in Response to Glacier Retreat in Marian Cove, King George Island, Antarctica in 2021-2022 Summer (하계 마리안 소만 빙하후퇴에 따른 식물플랑크톤 변동성 분석)

  • Chorom Shim;Jun-Oh Min;Boyeon Lee;Seo-Yeon Hong;Sun-Yong Ha
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.417-426
    • /
    • 2023
  • Rapid climate change has resulted in glacial retreat and increased meltwater inputs in the Antarctic Peninsula, including King George Island where Marian Cove is located. Consequently, these phenomena are expected to induce changes in the water column light properties, which in turn will affect phytoplankton communities. To comprehend the effects of glacial retreat on the marine ecosystem in Marian Cove, we investigated on phytoplankton biomass (chlorophyll-a, chl-a) and various environment parameters in this area in December 2021 and January 2022. The average temperature at the euphotic depth in January 2022 (1.41 ± 0.13 ℃) was higher than that in December 2021 (0.87 ± 0.17 ℃). Contrastingly, the average salinity was lower in January 2022 (33.9 ± 0.10 psu) than in December 2021 (34.1 ± 0.12 psu). Major nutrients, including dissolved inorganic nitrogen, phosphate, and silicate, were sufficiently high, and thus, did not act as limiting factors for phytoplankton biomass. In December 2021 and January 2022, the mean chl-a concentrations were 1.03 ± 0.64 and 0.66 ± 0.15㎍ L-1, respectively. The mean concentration of suspended particulate matter (SPM) was 24.9 ± 3.54 mgL-1 during the study period, with elevated values observed in the vicinity of the inner glacier. However, relative lower chl-a concentrations were observed near the inner glacier, possibly due to high SPM load from the glacier, resulting in reduced light attenuation by SPM shading. Furthermore, the proportion of nanophytoplankton exceeded 70% in the inner cove, contributing to elevated mean fractions of nanophytoplankton in the glacier retreat marine ecosystem. Overall, our study indicated that freshwater and SPM inputs from glacial meltwater may possibly act as main factors controlling the dynamics of phytoplankton communities in glacier retreat areas. The findings may also serve as fundamental data for better understanding the carbon cycle in Marian Cove.

The first attempt of utilization of a wideband autonomous acoustic system and its general knowledge on analyzing the wideband acoustic data (광대역 자율 음향 시스템의 국내 최초 활용 시도와 광대역 음향 데이터 분석 방안)

  • KANG, Myounghee;CHO, Youn-Hyoung;LA, Hyoung sul;SON, Wuju;YUN, Hyeju;ADRIANUS, Aldwin;AN, Young-Su
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.2
    • /
    • pp.130-140
    • /
    • 2022
  • Recently, wideband acoustic technology has been introduced and started to be used in fisheries acoustic surveys in various waters worldwide. Wideband acoustic data provides high vertical resolution, high signal-to-noise ratio and continuous frequency characteristics over a wide frequency range for species identification. In this study, the main characteristics of wideband acoustic systems were elaborated, and a general methodology for wideband acoustic data analysis was presented using data collected in frequency modulation mode for the first time in Republic of Korea. In particular, this study described the data recording method using the mission planner of the wideband autonomous acoustic system, wideband acoustic data signal processing, calibration and the wideband frequency response graph. Since wideband acoustic systems are currently installed on many training and research vessels, it is expected that the results of this study can be used as basic knowledge for fisheries acoustic research using the state-of-the-art system.

Development of Web Based GIS for Polar Ocean Research (극지 해양환경 연구를 위한 웹GIS 구축)

  • CHI, Jun-Hwa;HYUN, Chang-Uk;KIM, Hyun-Cheol;JOO, Hyoung-Min;YANG, Eun-Jin;PARK, Ho-Joon;KANG, Sung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.15-25
    • /
    • 2017
  • In recent years, polar research has been focused on climate change, natural resources, and development of a new North Pole Route. Since 2010, the Korea Polar Research Institute has been collecting various in situ data from the Arctic/Antarctic oceans using ARAON, which is the first effort of Korea toward leading global polar research. As a part of these activities, a web-based GIS service was developed to collect in situ data and to standardize data formats. Visualizations of in situ measurements and thematic maps were also developed to improve both the quantitative and qualitative quality of polar ocean research, and to increase accessibility of polar oceanographic data. This system will ultimately share all of the data acquired from the Arctic/Antarctic oceans with international research groups.

Target strength of Antarctic krill and ice krill using the SDWBA model (SDWBA 모델을 이용한 남극 크릴과 아이스 크릴의 반사강도 연구)

  • Wuju, SON;Hyoung Sul, LA;Wooseok, OH;Jongmin, JOO
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.4
    • /
    • pp.352-358
    • /
    • 2022
  • We explored the frequency response of krill target strength (TS) to understand the Antarctic krill (Euphausia superba) and ice krill (Euphausia crystallorophias) using the stochastic distorted-wave Born approximation (SDWBA) model. The results showed that the distribution of orientation and the fatness factor could significantly impact on the frequency response of TS. Krill TS is clearly depended on acoustic properties, which could affect to estimate the biomass of two krill species. The results provide insight into the importance of understanding TS variation to estimate the Antarctic krill and ice krill biomass, and their ecology related to the environmental features in the Southern Ocean.

Arctic Climate Change for the Last Glacial Maximum Derived from PMIP2 Coupled Model Results (제2차 고기후 모델링 비교 프로그램 시뮬레이션 자료를 이용한 마지막 최대빙하기의 북극 기후변화 연구)

  • Kim, Seong-Joong;Woo, Eun-Jin
    • Journal of Climate Change Research
    • /
    • v.1 no.1
    • /
    • pp.31-50
    • /
    • 2010
  • The Arctic climate change for the Last Glacial Maximum(LGM) occurred at 21,000 years ago (21ka) was investigated using simulation results of atmosphere-ocean coupled models from the second phase of the Paleoclimate Modelling Intercomparison Program(PMIP2). In the analysis, we used seven models, the NCAR CCSM of USA, ECHAM3-MPIOM of German Max-Planxk Institute, HadCM3M2 of UK Met Office, IPSL-CM4 of France Laplace Institute, CNRM-CM3 of France Meteorological Institute, MIROC3.2 of Japan CCSR at University of Tokyo, and FGOALS of China Institute of Atmospheric Physics. All the seven models reproduces the Arctic climate features found in the present climate at 0ka(pre-industrial time) in a reasonable degree in comparison to observations. During the LGM, the atmospheric $CO_2$ concentration and other greenhouse gases were reduced, the ice sheets were expanded over North America and northern Europe, the sea level was lowered by about 120m, and orbital parameters were slightly different. These boundary conditions were implemented to simulated LGM climate. With the implemented LGM conditions, the biggest temperature reduction by more than $24^{\circ}C$ is found over North America and northern Europe owing to ice albedo feedback and the change in lapse rate by high elevation. Besides, the expansion of ice sheets leads to the marked temperature reduction by more then $10^{\circ}C$ over the Arctic Ocean. The temperature reduction in northern winter is larger than in summer around the Arctic and the annual mean temperature is reduced by about $14^{\circ}C$. Compared to low mid-latitudes, the temperature reduction is much larger in high northern altitudes in the LGM. This results mirror the larger warming around the Artic in recent century. We could draw some information for the future under global warming from the knowledge of the LGM.

A Study on the Flow Analysis of Ventilation Louver for Polar Ship (극지운항 선박용 루버 환기창 유동해석에 관한 연구)

  • Yi, Chung-Seob;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.16-22
    • /
    • 2018
  • This study is about flow distribution in ventilation systems used in marine louvers. The flow analysis on a louver installed on the vent of a vessel results in the following conclusions: (a) as the velocity of the fluid entering the louver increases, the pressure drop increases; (b) as the pressure drop increases, it tends to increase following a quadratic function. The velocity was confirmed to decrease at the entrance of the louver. This indicates that as the pressure increases, the velocity decreases, and the velocity of the moving fluid is increasing as it passes through the louver vanes.

UV Effects on Production and Photoreactivity of Chromophoric Dissolved Organic Matter in Media of Polar Marine Phytoplanktons (극지 식물플랑크톤의 유색 용존 유기물의 생산과 광반응성에 대한 자외선 영향)

  • Park, Mi Ok;Ha, Sun-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.712-720
    • /
    • 2022
  • In this study, we evaluated the production and photoreactivity of CDOM of two polar phytoplanktons - Phaeocystis antarctica and Phaeocystis pouchetii, in order to find out UV effects on phytoplanktons. In visible region, CDOM in media of both phytoplanktons under UV-R decreased during 48hrs incubation period. However, in UV region CDOM decreased 30 % in the media of P. antarctica, but increased 10% in media of P. pouchetii, compared to CDOM concentrations of control after 48 hr incubation. This result indicates that biota in polar environment would not well protected from UV-R harmful effect when P. antarctica is dominant because of loss of CDOM, but when P. pouchetii is dominant species, production of UV absorbing organic matter could play more efficiently for UV screening for marine biota. Also we confirmed that FDOM of humic substance (C-peak) produced by these phtoplanktons under UV-R stress were well matched with fluorescence characteristics of the UV-protecting compound, MAAs. This finding shows that Phaeocystis pouchetti with low photoreactivity would contribute to DOM pool of polar marine environment under stratification by global warming.