DOI QR코드

DOI QR Code

UV Effects on Production and Photoreactivity of Chromophoric Dissolved Organic Matter in Media of Polar Marine Phytoplanktons

극지 식물플랑크톤의 유색 용존 유기물의 생산과 광반응성에 대한 자외선 영향

  • Park, Mi Ok (Department of Oceanography, Pukyong National University) ;
  • Ha, Sun-Yong (Korea Polar Research Institute)
  • Received : 2022.06.07
  • Accepted : 2022.08.29
  • Published : 2022.08.31

Abstract

In this study, we evaluated the production and photoreactivity of CDOM of two polar phytoplanktons - Phaeocystis antarctica and Phaeocystis pouchetii, in order to find out UV effects on phytoplanktons. In visible region, CDOM in media of both phytoplanktons under UV-R decreased during 48hrs incubation period. However, in UV region CDOM decreased 30 % in the media of P. antarctica, but increased 10% in media of P. pouchetii, compared to CDOM concentrations of control after 48 hr incubation. This result indicates that biota in polar environment would not well protected from UV-R harmful effect when P. antarctica is dominant because of loss of CDOM, but when P. pouchetii is dominant species, production of UV absorbing organic matter could play more efficiently for UV screening for marine biota. Also we confirmed that FDOM of humic substance (C-peak) produced by these phtoplanktons under UV-R stress were well matched with fluorescence characteristics of the UV-protecting compound, MAAs. This finding shows that Phaeocystis pouchetti with low photoreactivity would contribute to DOM pool of polar marine environment under stratification by global warming.

본 연구는 극지 식물플랑크톤의 자외선 영향을 파악하기 위해, Phaeocystis antarctica와 Phaeocystis pouchetii를 대상으로 유색 용존 유기물의 생산과 광반응성을 평가하였다. 강한 자외선에 노출 배양 시, 가시광선 파장대에서 유색 용존 유기물의 흡광도는 두 식물플랑크톤 모두 배양 초기에 비해 48시간 동안 감소하였다. 반면, 자외선 파장에서는 P. antarctica는 48시간 배양 후, 유색 용존 유기물의 흡광도는 초기 농도에 비해 약 30% 감소하였지만, P. pouchetii의 흡광도는 오히려 10% 증가한 경향을 보였다. 이 결과들은 강한 자외선에 노출될 경우, P. antarctica이 생산한 유색 용존 유기물은 광분해에 의한 감소로 인해 해수 중 수중 생태계에 자외선 차단 효과는 감소하는 반면, P. pouchetii가 생산한 유색 용존 유기물에 의한 광보호 효과가 더 효율적임을 알 수 있었다. 또한, 자외선 영향 하에서 배양된 P. pouchetii의 배양액에서 시간에 따라 증가한 유색 용존 유기물의 형광 특성이 지구 거대물질로 알려진 humic-like (C-peak)와 일치하여, 이는 자외선 차단 물질로 알려진 MAAs 생물 생산에 의한 것임을 확인하였다. 이는 기후변화에 의한 성층화가 강화되는 극지 해양환경에서, 광반응성이 낮은 P. pouchetti가 용존 유기물의 증가에 기여할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 부경대학교 자율창의학술연구비(2020년)에 의하여 연구되었음.

References

  1. Boelen, P., M. K. de Boer, G. W. Kraay, M. J. Veldhuis, and A. G. Buma(2000), UVBR-induced DNA damage in natural marine picoplankton assemblages in the tropical Atlantic Ocean. Marine Ecology Progress Series, Vol. 193, pp. 1-9. https://doi.org/10.3354/meps193001
  2. Garcia-Pichel, F.(1994), A model for internal self shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnology and Oceanography, Vol. 39, No. 7, pp. 1704-1717. https://doi.org/10.4319/lo.1994.39.7.1704
  3. Guillard, R. R. and J. H. Ryther(1962), Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian journal of microbiology, Vol. 8, No. 2, pp. 229-239. https://doi.org/10.1139/m62-029
  4. Ha, S. Y., Y. N. Kim, M. O. Park, S. H. Kang, H. C. Kim, and K. H. Shin(2012), Production of mycosporine-like amino acids of in situ phytoplankton community in Kongsfjorden, Svalbard, Arctic. Journal of Photochemistry and Photobiology B: Biology, Vol. 114, pp. 1-14. https://doi.org/10.1016/j.jphotobiol.2012.03.011
  5. Helbling, E. W., V. Villafane, M. Ferrario, and O. Holm-Hansen(1992), Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species. Marine Ecology Progress Series, Vol. 80, No. 1, pp. 89-100. https://doi.org/10.3354/meps080089
  6. Karentz, D., J. E. Cleaver, and D. L. Mitchell(1991), Cell survival characteristics and molecular responses of Antarctic phytoplankton ultraviolet-B radiation. Journal of Phycology, Vol. 27, No. 3, pp. 326-341. https://doi.org/10.1111/j.0022-3646.1991.00326.x
  7. Laurion, I., A. Lami, and R. Sommaruga(2002), Distribution of mycosporine-like amino acids and photoprotective carotenoids among freshwater phytoplankton assemblages. Aquatic Microbial Ecology, Vol. 26, No. 3, pp. 283-294. https://doi.org/10.3354/ame026283
  8. Liu, Z., D. P. Hader, and R. Sommaruga(2004), Occurrence of mycosporine-like amino acids (MAAs) in the bloom-forming cyanobacterium Microcystis aeruginosa. Journal of Plankton Research, Vol. 26, No. 8, pp. 963-966. https://doi.org/10.1093/plankt/fbh083
  9. Marchant, H. J., A. T. Davidson, and G. J. Kelly(1991), UV-B protecting compounds in the marine alga Phaeocystis pouchetii from Antarctica. Marine Biology, Vol. 109, No. 3, pp. 391-395. https://doi.org/10.1007/BF01313504
  10. Moeller, R. E., S. Gilroy, C. E. Williamson, G. Grad, and R. Sommaruga(2005), Dietary acquisition of photoprotective compounds (mycosporine like amino acids, carotenoids) and acclimation to ultraviolet radiation in a freshwater copepod. Limnology and Oceanography, Vol. 50, No. 2, pp. 427-439. https://doi.org/10.4319/lo.2005.50.2.0427
  11. Moisan, T. A. and B. G. Mitchell(2001), UV absorption by mycosporine-like amino acids in Phaeocystis antarctica Karsten induced by photosynthetically available radiation. Marine Biology, Vol. 138, No. 1, pp. 217-227. https://doi.org/10.1007/s002270000424
  12. Nelson, N. B., D. A. Siegel, C. A. Carlson, and C. M. Swan(2010), Tracing global biogeochemical cycles and meridional overturning circulation using chromophoric dissolved organic matter. Geophysical Research Letters, Vol. 37, L03610.
  13. Ortega-Retuerta, E., T. K. Frazer, C. M. Duarte, S. Ruiz-Halpern, A. Tovar-Sanchez, J. M. Arrieta, and I. Rechea(2009), Biogeneration of chromophoric dissolved organic matter by bacteria and krill in the Southern Ocean. Limnology and Oceanography, Vol. 54, No. 6, pp. 1941-1950. https://doi.org/10.4319/lo.2009.54.6.1941
  14. Romera-Castillo, C., H. Sarmento, X. A. Alvarez-Salgado, J. M. Gasol, and C. Marrasea(2010), Production of chromophoric dissolved organic matter by marine phytoplankton. Limnology and Oceanography, Vol. 55, No. 1, pp. 446-454. https://doi.org/10.4319/lo.2010.55.1.0446
  15. Singh, N., V. Kamath, K. Narasimhamurthy, and R. S. Rajini(2008), Protective effect of potato peel extract against carbon tetrachloride-induced liver injury in rats. Environmental toxicology and pharmacology, Vol. 26, No. 2, pp. 241-246. https://doi.org/10.1016/j.etap.2008.05.006
  16. Smith, R. C., B. B. Prezelin, K. E. A. Baker, R. R. Bidigare, N. P. Boucher, T. Coley, and K. J. Waters(1992), Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science, Vol. 255, pp. 952-959. https://doi.org/10.1126/science.1546292
  17. Stedmon, C. A., R. M. W. Amon, A. J. Rinehart, and S. A. Walker(2011), The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: Pan Arctic trends and differences. Marine Chemistry, Vol. 124, No. 1-4, pp. 108-118. https://doi.org/10.1016/j.marchem.2010.12.007
  18. Vernet, M. and K. Whitehead(1996), Release of ultravioletabsorbing compounds by the red-tide dinoflagellate Lingulodinium polyedra. Marine Biology, Vol. 127, No. 1, pp. 35-44. https://doi.org/10.1007/BF00993641