• 제목/요약/키워드: 극돌기간 삽입술

검색결과 6건 처리시간 0.026초

퇴행성 요추부 척추관 협착증 치료를 위한 극돌기간 고정기구의 설계 및 생체역학적 분석 (Design of the Interspinous Process Fixator Using Biomechanical Analysis for the Treament of Degenerative Lumbar Spinal Stenosis)

  • 허순;손권;이성재;문병영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1963-1966
    • /
    • 2005
  • Degenerative lumbar spinal stenosis(DLSS) is a disease inducing low back pain, leg pain, convulsion, numbness, and neurogenic claudication from compression of nerve root. Intervertebra fixation was reported to increase the degenerative of neighbor region after treatment. Recently, a new surgical technique of inserting a fixator between interspinous processes has been introduced. The purpose of this study is to design of the interspinous process fixator with flexibility to complement the trouble of using fixator in DLSS. This study evaluated the existing fixator through the mechanical test and modified fixators using the finite element analysis(FEA). Displacement, stiffness and Von-Mises stress were found to have similar values to those obtained from the mechanical test and the FEA in the biomechanical loading condition. Effects of variation in length and thickness were investigated to design an optimal fixator.

  • PDF

요추부 극돌기간 고정기구의 생체역학적 해석 (Biomechanical Analysis of Lumbar Interspinous Process Fixators)

  • 허순;박정홍;이성재;손권
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.195-202
    • /
    • 2006
  • The degenerative lumbar spinal stenosis (DLSS) is a disease inducing low back pain, leg pain, convulsion. numbness, and neurogenic claudication from compression of nerve root. Intervertebra fixation was reported to increase the degeneration of neighbor lesion after treatment. Recently, a new surgical technique of inserting a fixator between interspinous processes has been introduced. The purpose of this study is to design the interspinous process fixator with flexibility to complement the trouble of using fixator in DLSS. This study evaluated the existing fixator through the mechanical test and modified it using the finite element analysis (FEA). The evaluation was based on the displacement, stiffness and von-Mises stress obtained from the mechanical test and calculated from the FEA in the biomechanical loading condition. Effects of variation in length and thickness were investigated to design an optimal fixator. Three prototypes were manufactured using FEA results. Mechanical tests under the biomechanical loading condition were performed to select the best one from these three. The selected fixator increased flexiblity by 32.9%.

요추부 극돌기간 고정기구의 생체역학적 해석과 소형화 및 유연성 향상 설계 (Biomechanical Analysis of Lumbar Interspinous Process Fixators and Design of Miniaturization and Advanced Flexibility)

  • 박정홍;허순;이성재;손권
    • 대한기계학회논문집A
    • /
    • 제30권12호
    • /
    • pp.1509-1517
    • /
    • 2006
  • The intervertebral fusion was reported to increase the degeneration of the neighboring region. Recently, a new technique of inserting an interspinous process fixator has been introduced to minimize the degenerative change in the lumbar spine. This study analyzed biomechanical effects of the fixator in the lumbar spine, and designed a new prototype to improve flexibility of the fixator with a reduced size. The evaluation was based on the displacement, stiffness and von-Mises stress obtained from the mechanical test and finite element analysis. A finite element lumbar model of L1 to L5 was constructed. The finite element model was used to analyze intervertebral fusion, insertion of a commercial fixator and a new prototype. The range of motion of intervertebral segments and pressures at vertebral discs were calculated from FEA. The results showed that the stiffness of the prototype was reduced by 32.9% than that of the commercial one.

요추부 척추관 협착증 치료를 위한 극돌기간 삽입술의 3차원 분석을 통한 생체역학적 효과 분석 (The Biomechancial Effects of an Interspinous Spacer Implant on 3-D Motions for the Treatment of Lumbar Spinal Stenosis)

  • 이희성;신규철;문수정;정태곤;이권용;이성재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1207-1210
    • /
    • 2004
  • As many humans age, degenerative lumbar spinal stenosis (DLSS) becomes a major cause of lower limb discomfort and disability. By surgical treatment method of DLSS, the existing surgical treatment methods using internal fixation have showed degeneration changes of an adjacent vertebrae and loss of lumbar spine lordosis-kyphosis due to eliminating a motion. For solving the problems of internal fixation, a novel interspinous spacer has been developed to treat DLSS by surgical treatment method. In this study, we evaluated the biomechanical effects of the interspinous spacer on the kinematics of the porcine lumbar spine before and after insertion of the implant. For this purpose, a device that is capable of measuring 3-D motions were built based on direct linear transformation (DLT) algorithm written with MATLAB program. Results showed that in extension, a change of the mean angle between the intact and the implanted specimens at L4-L5 was 1.87 degree difference and the implant reduced the extension range of motion of the L4-L5 (p<0.05). But the range of motion in flexion, axial rotation and lateral bending at the adjacent segments was not statistically affected by the implant. In conclusion, we thought that interspinous spacer may have remedical value for DLSS by flexing human lumbar spine.

  • PDF

척추경나사못을 이용한 유합술과 동반 시술된 극돌기간 삽입기구의 생체역학적 연구 (Biomechanical Analysis of a Combined Interspinous Spacer with a Posterior Lumbar Fusion with Pedicle Screws)

  • 김영현;박은영;이성재
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권6호
    • /
    • pp.276-282
    • /
    • 2015
  • Recently, during the multi-level fusion with pedicle screws, interspinous spacer are sometimes substituted for the most superior level of the fusion in an attempt to reduce the number of fusion level and likelihood of degeneration process at the adjacent level. In this study, a finite element (FE) study was performed to assess biomechanical efficacies of the interspinous spacer combined with posterior lumbar fusion with a previously-validated 3-dimensional FE model of the intact lumbar spine (L1-S1). The post-operative models were made by modifying the intact model to simulate the implantation of interspinous spacer and pedicle screws at the L3-4 and L4-5. Four different configurations of the post-op model were considered: (1) a normal spinal model; (2) Type 1, one-level fusion using posterior pedicle screws at the L4-5; (3) Type 2, two-level (L3-5) fusion; (4) Type 3, Type 1 plus Coflex$^{TM}$ at the L3-4. hybrid protocol (intact: 10 Nm) with a compressive follower load of 400N were used to flex, extend, axially rotate and laterally bend the FE model. As compared to the intact model, Type 2 showed the greatest increase in Range of motion (ROM) at the adjacent level (L2-3), followed Type 3, and Type 1 depending on the loading type. At L3-4, ROM of Type 2 was reduced by 34~56% regardless of loading mode, as compared to decrease of 55% in Type 3 only in extension. In case of normal bone strength model (Type 3_Normal), PVMS at the process and the pedicle remained less than 20% of their yield strengths regardless of loading, except in extension (about 35%). However, for the osteoporotic model (Type 3_Osteoporotic), it reached up to 56% in extension indicating increased susceptibility to fracture. This study suggested that substitution of the superior level fusion with the interspinous spacer in multi-level fusion may be able to offer similar biomechanical outcome and stability while reducing likelihood of adjacent level degeneration.