본 논문은 사용자 수준에 적합한 맞춤형 학습코스를 추천하여 학습효과를 향상시킬 수 있는 추천모델을 개발하고, 효과분석을 위한 방안을 제시한다. 학습자 개개인의 학습수준이나 학습내용 등에 따라 적합한 학습주제를 선정하여 제공하는 것은 중요하나, 일반적인 추천은 전문가 그룹을 활용한 사람중심의 추천으로 시간이 오래 걸리는 등 자원의 비효율적 한계점[1]을 가지고 있다. 이를 극복하기 위해, TF-IDF를 이용해 단어별 가중치를 계산하여 고빈도 단어를 추출하여 벡터 공간에 배치시키고, Cosine Similarity 기법을 이용해 벡터간의 유사도를 측정하였다. 학습자 프로파일을 분석하고, 학습스킬간의 연관성을 고려하여 맞춤형 학습코스를 추천하기 위해, 워드 임베딩 기법을 적용하였고, 이를 위해 오픈소스 Gensim[2]을 이용하였다. 맞춤형 학습코스 추천 모델의 효과를 분석하기 위한 실험을 설계하고 평가 문항지를 개발하였다.
Proceedings of the Korea Information Processing Society Conference
/
2017.04a
/
pp.708-711
/
2017
최근 의류업계에서는 데이터마이닝을 이용하여 의상을 추천하는 시스템에 대한 연구가 활발하게 진행되고 있다. 하지만 기존 연구들은, 의상구매가 온 오프라인 모두에서 활발함에도 불구하고 온라인 쇼핑몰에서 얻을 수 있는 데이터에 국한되어 연구가 진행되고 있다. 본 논문에서는 온라인 데이터 위주의 기존 의상 추천 시스템을 스마트 홈 미러의 가상 착의시스템을 사용하여 온 오프라인 데이터를 모두 반영한 추천시스템을 구현했다. 또한 사용자에게 적합한 추천시스템을 제공하기 위해 지역별 인구분포와 사용자 기본DB를 단계별로 그룹화 했다. 정확도와 사용자 만족도를 향상 시키고자 단계별로 가중치를 부여해 협업 필터링과 날씨, 종류, 색상을 속성으로 한 내용기반 필터링을 결합하는 시스템을 제시했다.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.37
no.1
/
pp.43-54
/
2000
Character-based trademarks constitute 90% of registered trademarks at the Korean Patent Office. This paper proposes a method to improve the precision rate when for similar trademarks in such systems. The proposed method first calculates the similarity measure by an image processing. The method has been implemented and merged with the existing device-mark retrieval system to improve precision rate by 16.2% compared to other approximate matching methods.
Journal of the Korean Institute of Intelligent Systems
/
v.9
no.4
/
pp.411-419
/
1999
In this paper, we propose an evaluation model of systems level using modified eigenvector method and
fuzzy subordination relations. This model is desibmed to evaluate the level of system in enterprise. In here.
modified eigenvector method is proposed to compute the weights of each criteria in two evaluation group.
Also, fuzzy subordination relations is used to evaluate the relationship between the criteria by painvise
comparison. In this paper. we can get the evaluated score for the present level of system. This method will
help to manage and improve the systems. We show the efficiency of the this method by means of a case study
for evaluation problem of environmental management systems.
Annual Conference on Human and Language Technology
/
2001.10d
/
pp.138-145
/
2001
자동 문서 범주화란 문서의 내용에 기반하여 미리 정의되어 있는 범주에 문서를 자동으로 분류하는 작업이다. 문서 분류를 위해서는 문서들을 가장 잘 표현할 수 있는 자질들을 정하고, 이러한 자질들을 통해 분류할 문서를 표현해야 한다. 기존의 연구들은 문장간의 구분 없이, 문서 전체에 나타난 각 자질의 빈도수를 이용하여 문서를 표현 한다. 그러나 하나의 문서 내에서도 중요한 문장과 그렇지 못한 문장의 구분이 있으며, 이러한 문장 중요도의 차이는 각각의 문장에 나타나는 자질의 중요도에도 영향을 미친다. 본 논문에서는 문서에서 사용되는 중요 문장 추출 기법을 문서 분류에 적용하여, 문서 내에 나타나는 각 문장들의 문장 중요도를 계산하고 문서의 내용을 잘 나타내는 문장들과 그렇지 못한 문장들을 구분하여 각 문장에서 출현하는 자질들의 가중치를 다르게 부여하여 문서를 표현한다. 이렇게 문장들의 중요도를 고려하여 문서를 표현한 기법의 성능을 평가하기 위해서 뉴스 그룹 데이터를 구축하고 실험하였으며 좋은 성능을 얻을 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.475-477
/
2001
본 논문은 사용자의 구매 패턴을 찾아서 사용자가 원하는 상품을 추천하는 알고리즘을 제안하고자 한다. 제안하고 있는 item dependency map은 구매된 상품간의 관계를 수식화 하여 행렬의 형태로 표현한 것이다. Item dependency map의 값은 사용자가 A라는 상품을 구매한 후 B 상품을 살 확률이다. 이런 정보를 가지고 있는 item dependency map은 홉필드 네트웍(Hopfield network)에서 연상을 위한 패턴 값으로 적용된다. 홉필드 네트웍은 각 노드사이의 연결가중치에 기억하고자 하는 것들을 연상시킨 뒤 어떤 입력을 통해서 전체 네트워크가 어떤 평형상태에 도달하는 방식으로 작동되는 신경망 중의 하나이다. 홉필드 네트웍의 특징 중의 하나는 부분 정보로부터 전체 정보를 추출할 수 있는 것이다. 이러한 특징을 가지고 사용자들의 일반적인 구매패턴을 일부 정보만 가지고 예측할 수 있다. Item dependency map은 홉필드 네트웍에서 사용자들의 그룹별 패턴을 학습하는데 사용된다. 따라서 item dependency map이 얼마나 사용자 구매패턴에 대한 정보를 가지고 있는지에 따라 그 결과가 결정되는 것이다. 본 논문은 정확한 item dependency map을 계산해 내는 알고리즘을 주로 논의하겠다.
본 논문에서는 Java 프로그램의 복잡도를 측정하기 위해 필요한 인자들을 제안하였다. 이러한 인자들을 추출하기 위해 Java 프로그램을 분석하여 객체지향 설계 척도 값들을 계산하고 통계적 분석을 수행하였다. 그 결과 기존의 연구에서 발견되었던 클래스의 크기 인자 외에도 메소드 호출 빈도, 응집도, 자식 클래스의 수, 내부 클래스 및 상속 계층의 깊이가 주요 인자임이 파악되었다. 클래스의 크기 척도로 분류되었던 자식 클래스의 수는 다른 크기 척도들과 다른 성질을 가진다는 것을 발견하였다. 또한 프로그램의 크기가 커지고 결합도가 높아질수록 응집도가 떨어진다는 것을 입증하였다. 그리고 인자 분석을 바탕으로 인간의 인지 능력과 인자의 상관관계를 고려한 가중치를 적용하기 위해 인자별로 회귀분석을 수행하였다. 보다 적은 척도를 가지고 인자를 설명할 수 있는 회귀식을 도출하였다. 두 그룹에 대한 교차 검증 결과 회귀식이 높은 신뢰도를 가지는 것으로 나타났다. 따라서 본 논문에서 제안한 인자들을 이용하는 경우 Java 프로그램의 복잡도를 측정할 수 있는 새로운 척도로 사용할 수 있다.
Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.247-249
/
2002
본 논문은 퍼지 추론을 이용하여 소수문서로부터의 대표 용어들을 추출하고 가중치를 부여한 기존 방법의 유용성을 평가하고자 GIS (Generalized Instance Set) 알고리즘에 이를 적용시켜 보았다. GIS 는 학습 문서 집합에 대한 플러스터링 과정을 통해 문서 그룹들을 생성하고 이들에 대한 선형 분류기들을 유도한 뒤 k-NN 알고리즘을 적용하는 방법이다. GIS의 일반화(generalization) 과정에 Rocchio, Widrow-Hoff 및 퍼지 추론을 이용한 방법을 적용시켜 문서 분류 성능을 비교하였다. 긍정적 문서 집합에 대한 실험에서 비교적 우수한 성능 향상을 보여줌으로써 퍼지 추론을 이용한 방법의 유용성을 확인 할 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2009.04a
/
pp.352-355
/
2009
본 논문에서는 Mobbing(집단 따돌림) 현상에 관련된 7개의 요소(Factor)와 그 하위에 포함된 60개의 속성(Attribute)들을 선정한다. 다음으로 선정한 속성들에 대해 나와 사용자들 사이에 관계가 있으면 '1', 관계가 없으면 '0'으로 표현하고, 나와 사용자들간의 유사도 산정을 위해 각 요소안에 포함된 속성들의 합에 유사도 함수를 적용한다. 다음으로 클레멘타인의 인공신경망 알고리즘을 통해 속성들을 포함한 요소들이 취할 최적의 가중치를 산출하고, 이 값들의 총합으로 Mobbing 지수를 산정한다. 마지막으로 Social Network 사용자들의 Mobbing 지수를 본 논문에서 설계한 G2 Mobbing 성향 분류 모델(4개의 그룹; Ideal Group of the Social Network, Bullies, Aggressive victimes, Victimes)에 매핑하여 사용자들의 Mobbing 성향을 알아본다.
This study identified vitamin E associated with metabolic syndrome and metabolic syndrome components among Korean adults aged over 19 years. Secondary data from the 2016-2018 Korean National Health and Nutrition Examination Survey were used for this study. Data from 6,425 were analyzed by logistic regression analysis using a complex sample procedure. As a result of logistic regression analysis, the odds ratio was increased in the group with high vitamin E levels compared to the group with normal vitamin E levels. There are metabolic syndrome (Adjusted Odds Ratio [AOR]: 1.889, 95% Confidence Interval [CI]: 1.550-2.303, p<.001), abdominal obesity (AOR: 1.444, CI: 1.205-1.730, p<.001), hyperglyceridemia(AOR: 3.182, CI: 2.641-3.835, p<.001), systolic blood pressure (AOR: 1.711, CI: 1.446-2.026, p<.001), diastolic blood pressure (AOR: 1.806, CI: 1.521-2.144, p<.001), low high density lipoprotein cholesterol (AOR: 1.558, CI: 1.060-2.290, p=.024). Therefore vitamin E was associated with metaboic syndrome and metabolic syndrome components. So when providing nursing intervention for people with metabolic syndrome, education on vitamin E should be actively included.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.