• Title/Summary/Keyword: 그룹모델 클러스터링

Search Result 41, Processing Time 0.021 seconds

Model-based Ozone Forecasting System using Fuzzy Clustering and Decision tree (퍼지 클러스터링과 결정 트리를 이용한 모델기반 오존 예보 시스템)

  • 천성표;이미희;이상혁;김성신
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.458-461
    • /
    • 2004
  • 오존 반응 메카니즘은 상당히 복잡하고 비선형적이기 때문에 오존 농도를 예측하는 것은 상당한 어려움을 안고 있다 따라서, 신뢰성 높은 오존 예측값을 구하는데 단일 예측모델만으로는 한계가 있으며, 이를 개선하기 위하여 다중 모델을 제안하였다. 입력데이터에 퍼지 클러스터링을 사용하여 고, 중, 저농도별로 그룹핑한 후, 그룹핑된 오존농도에 대해서 의사결정 트리를 사용하여 그룹핑된 오존데이터가 어느 정도 분류능력을 갖는지 파악하여, 오차가 가장 적은 분류특성을 갖는 그룹을 설정하여, 다중모델의 입력 데이터로 사용하여 모델을 형성하였다. 의사결정 트리를 이용하여 모델의 입력 데이터를 설정하는 것은 어떤 오존농도까지의 범위를 클래스로 설정하느냐에 따라서 모델의 성능과 고, 중, 저농도의 오존을 분류하는 성능이 달라지므로 본 논문에서는 퍼지 클러스터링을 이용하여 의사결정 트리의 클래스의 범위를 설정하여 예측 시스템을 구현하였다.

  • PDF

An Energy Saving Method Using Cluster Group Model in Wireless Sensor Networks (무선 센서 네트워크에서 클러스터 그룹 모델을 이용한 에너지 절약 방안)

  • Kim, Jin-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4991-4996
    • /
    • 2010
  • Clustering method in wireless sensor network is the technique that forms the cluster to aggregate the data and transmit them at the same time that they can use the energy efficiently. Even though cluster group model is based on clustering, it differs from previous method that reducing the total energy consumption by separating energy overload to cluster group head and cluster head. In this thesis, I calculate the optimal cluster group number and cluster number in this kind of cluster group model according to threshold of energy consumption model. By using that I can minimize the total energy consumption in sensor network and maximize the network lifetime. I also show that proposed cluster group model is better than previous clustering method at the point of network energy efficiency.

Group Model Clustering Method for Model Downsizing (모델 축소를 위한 그룹 모델 클러스터링 방법에 대한 연구)

  • Park, Mi-Na;Ha, Jin-Young
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.185-189
    • /
    • 2008
  • Practical pattern recognition systems should overcome very large class problem. Sometimes it is almost impossible to build every model for every class due to memory and time constraints. For this case, grouping similar models will be helpful. In this paper, we propose GMC(Group Model Clustering) to build a large class Chinese character recognition system. We built hidden Markov models for 10% of total classes, then classify the rest of classes into already trained group classes. Finally group models are trained using group model clustered data. Recognition is performed using only group models, in order to achieve reduced model size and improved recognition speed.

  • PDF

An Energy Consumption Model using Hierarchical Unequal Clustering Method (계층적 불균형 클러스터링 기법을 이용한 에너지 소비 모델)

  • Kim, Jin-Su;Shin, Seung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2815-2822
    • /
    • 2011
  • Clustering method in wireless sensor networks is the technique that forms the cluster to aggregate the data and transmit them at the same time that they can use the energy efficiently. In this paper, I propose the hierarchical unequal clustering method using cluster group model. This divides the entire network into two layers. The data aggregated from layer 2 consisted of cluster group is sent to layer 1, after re-aggregation the total data is sent to base station. This method decreases whole energy consumption by using cluster group model with multi-hop communication architecture. Hot spot problem can be solved by establishing unequal cluster. I also show that proposed hierarchical unequal clustering method is better than previous clustering method at the point of network energy efficiency.

Automatic Color Palette Extraction for Paintings Using Color Grouping and Clustering (색상 그룹핑과 클러스터링을 이용한 회화 작품의 자동 팔레트 추출)

  • Lee, Ik-Ki;Lee, Chang-Ha;Park, Jae-Hwa
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.7
    • /
    • pp.340-353
    • /
    • 2008
  • A computational color palette extraction model is introduced to describe paint brush objectively and efficiently. In this model, a color palette is defined as a minimum set of colors in which a painting can be displayed within error allowance and extracted by the two step processing of color grouping and major color extraction. The color grouping controls the resolution of colors adaptively and produces a basic color set of given painting images. The final palette is obtained from the basic color set by applying weighted k-means clustering algorithm. The extracted palettes from several famous painters are displayed in a 3-D color space to show the distinctive palette styles using RGB and CIE LAB color models individually. And the two experiments of painter classification and color transform of photographic image has been done to check the performance of the proposed method. The results shows the possibility that the proposed palette model can be a computational color analysis metric to describe the paint brush, and can be a color transform tool for computer graphics.

Probability-based Deep Learning Clustering Model for the Collection of IoT Information (IoT 정보 수집을 위한 확률 기반의 딥러닝 클러스터링 모델)

  • Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.18 no.3
    • /
    • pp.189-194
    • /
    • 2020
  • Recently, various clustering techniques have been studied to efficiently handle data generated by heterogeneous IoT devices. However, existing clustering techniques are not suitable for mobile IoT devices because they focus on statically dividing networks. This paper proposes a probabilistic deep learning-based dynamic clustering model for collecting and analyzing information on IoT devices using edge networks. The proposed model establishes a subnet by applying the frequency of the attribute values collected probabilistically to deep learning. The established subnets are used to group information extracted from seeds into hierarchical structures and improve the speed and accuracy of dynamic clustering for IoT devices. The performance evaluation results showed that the proposed model had an average 13.8 percent improvement in data processing time compared to the existing model, and the server's overhead was 10.5 percent lower on average than the existing model. The accuracy of extracting IoT information from servers has improved by 8.7% on average from previous models.

Correlation Analysis of forest fire data based on Clustering Method (클러스터링 기법을 이용한 산불 데이터의 상관관계 분석)

  • Kim, Eun-Hee;Chi, Jeong-Hee;Shon, Ho-Sun;Ryu, Keun-Ho;Lee, Chung-Ho
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.81-86
    • /
    • 2005
  • 이 논문에서는 산불 발생의 패턴을 예측하기 위해 데이터 마이닝의 클러스터링 기법을 이용하여 산불 데이터를 그룹화하고 그 결과를 이용하여 산불 데이터의 상관관계를 분석하는 방법을 제안하였다. 즉, 클러스터링 기법을 이용하여 산불 데이터를 사용자가 원하는 수의 그룹으로 분류하고, 생성된 산불 데이터 클러스터 모델을 이용하여 새로운 유형의 산불패턴을 예측 할 수 있도록 하였다. 또한 결과 클러스터의 생성을 위해 이전의 산불 분포 데이터를 저장 관리하여 클러스터 간의 상관관계 분석을 통해 시퀀스를 생성하였고, 생성된 각각의 클러스터 시퀀스를 통합하여 클러스터들의 시퀀스를 추출하여 산불이 발생한 이후의 향후 발생 가능한 산불 유형을 예측하기 위한 방법을 제공하였다. 이는 과거에 발생된 산불의 유형뿐만 아니라 새로운 형태의 산불 유형 분류나 분석에 이용 가능하다.

  • PDF

Modeling and Prediction of Time Series Data based on Markov Model (마코프 모델에 기반한 시계열 자료의 모델링 및 예측)

  • Cho, Young-Hee;Lee, Gye-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.225-233
    • /
    • 2011
  • Stock market prices, economic indices, trends and changes of social phenomena, etc. are categorized as time series data. Research on time series data has been prevalent for a while as it could not only lead to valuable representation of data but also provide future trends as well as changes in direction. We take a conventional model based approach, known as Markov chain modeling for the prediction on stock market prices. To improve prediction accuracy, we apply Markov modeling over carefully selected intervals of training data to fit the trend under consideration to the model. Another method we take is to apply clustering to data and build models of the resultant clusters. We confirmed that clustered models are better off in predicting, however, with the loss of prediction rate.

The Document Clustering using LSI of IR (LSI를 이용한 문서 클러스터링)

  • 고지현;최영란;유준현;박순철
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.330-335
    • /
    • 2002
  • The most critical issue in information retrieval system is to have adequate results corresponding to user requests. When all documents related with user inquiry retrieve, it is not easy not only to find correct document what user wants but is limited. Therefore, clustering method that grouped by corresponding documents has widely used so far. In this paper, we cluster on the basis of the meaning rather than the index term in the existing document and a LSI method is applied by this reason. Furthermore, we distinguish and analyze differences from the clustering using widely-used K-Means algorithm for the document clustering.

  • PDF

Find Friends System on SNS to Apply Clustering Algorithm in Network Environment (클러스터링 알고리즘의 네트워크 환경 적용을 통한 SNS 친구추천)

  • Lee, Rich C.;Lee, Woo-Key;Park, Simon S.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.31-32
    • /
    • 2012
  • 본 연구는 소셜 네트워크에서 사용자간의 친밀도에 기반하여 보여주는 '친구추천' 이라는 방법을 그래프 클러스터링을 이용하여 접근하고자 한다. 기존의 방법과는 다르게 사용자에게 개인화된 선별 정보를 제공하는데 목적이 있다. 또한 일반적 클러스터링이 아닌 그래프 이론에 근거한 거리 계산을 기반으로 친화력 전파 모델(Affinity Propagation) 클러스터링 기법을 적용하는 방법을 제안한다. 이 방법으로 클러스터링을 진행하여 선별된 같은 그룹 안에 있는 개인화된 친구 추천을 효과적으로 수행할 수 있음을 입증하였다.