• Title/Summary/Keyword: 그래핀 전극

Search Result 93, Processing Time 0.02 seconds

Study of the Carrier Injection Barrier by Tuning Graphene Electrode Work Function for Organic Light Emitting Diodes OLED (일함수 변화를 통한 그래핀 전극의 배리어 튜닝하기)

  • Kim, Ji-Hun;Maeng, Min-Jae;Hong, Jong-Am;Hwang, Ju-Hyeon;Choe, Hong-Gyu;Mun, Je-Hyeon;Lee, Jeong-Ik;Jeong, Dae-Yul;Choe, Seong-Yul;Park, Yong-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.111.2-111.2
    • /
    • 2015
  • Typical electrodes (metal or indium tin oxide (ITO)), which were used in conventional organic light emitting devices (OLEDs) structure, have transparency and conductivity, but, it is not suitable as the electrode of the flexible OLEDs (f-OLEDs) due to its brittle property. Although Graphene is the most well-known alternative material for conventional electrode because of present electrode properties as well as flexibility, its carrier injection barrier is comparatively high to use as electrode. In this work, we performed plasma treatment on the graphene surface and alkali metal doping in the organic materials to study for its possibility as anode and cathode, respectively. By using Ultraviolet Photoemission Spectroscopy (UPS), we investigated the interfaces of modified graphene. The plasma treatment is generated by various gas types such as O2 and Ar, to increase the work function of the graphene film. Also, for co-deposition of organic film to do alkali metal doping, we used three different organic materials which are BMPYPB (1,3-Bis(3,5-di-pyrid-3-yl-phenyl)benzene), TMPYPB (1,3,5-Tri[(3-pyridyl)-phen-3-yl]benzene), and 3TPYMB (Tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane)). They are well known for ETL materials in OLEDs. From these results, we found that graphene work function can be tuned to overcome the weakness of graphene induced carrier injection barrier, when the interface was treated with plasma (alkali metal) through the value of hole (electron) injection barrier is reduced about 1 eV.

  • PDF

Development of Disposable Immunosensors for Rapid Determination of Sildenafil and Vardenafil in Functional Foods

  • Vijayaraj, Kathiresan;Lee, Jun Hyuck;Kim, Hyung Sik;Chang, Seung-Cheol
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.2
    • /
    • pp.83-88
    • /
    • 2017
  • We introduced disposable amperometric immunosensors for the detection of Sildenafil and Vardenafil (SDF/VDF) based on screen printed carbon electrodes. The developed immunosensors were used as a non-competitive sandwich-type enzyme immunoassay with a horseradish peroxidase label. The sensors were constructed on screen printed carbon electrodes by the simple electrochemical deposition of a reduced graphene oxide and chitosan (ErGO-CS) composite. To evaluate the sensing chemistry and optimize the sensor characteristics, a series of electrochemical experiments were carried out including electrochemical impedance spectroscopy, cyclic voltammetry and amperometry. The sensors showed a linear response to SDF/VDF concentrations in a range from 100 pg/mL to 300 ng/mL. The lower detection limit was calculated to be 55 pg/mL, the sensitivity was calculated to be $1.02{\mu}Ang/mL/cm^2$, and the sensor performance exhibited good reproducibility with a relative standard deviation (RSD) of 7.1%. The proposed sensing chemistry strategy and the sensor format can be used as a simple, cost-effective, and feasible method for the in-field analysis of SDF/VDF in functional or health supplement food samples.

Development of a Hydrogen Peroxide Sensor Based on Palladium and Copper Electroplated Laser Induced Graphene Electrode (PdCu를 전기 도금한 레이저 유도 그래핀 전극 기반의 과산화수소 측정 센서 개발)

  • Park, Daehan;Han, Ji-Hoon;Kim, Taeheon;Pak, Jungho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1626-1632
    • /
    • 2018
  • In this paper, we describe the fabrication and characterization of a hydrogen peroxide ($H_2O_2$) sensor based on palladium and copper (PdCu) electroplated laser induced graphene (LIG) electrodes. $CO_2$ laser was used to form LIG electrodes on a PI film. This fabrication method allows simple control of the LIG electrode size and shape. The PdCu was electrochemically deposited on the LIG electrodes to improve the electrocatalytic reaction with $H_2O_2$. The electrochemical performance of this sensor was evaluated in terms of selectivity, sensitivity, and linearity. The physical characterization of this sensor was conducted using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), which confirmed that PdCu was formed on the laser induced graphene electrode. In order to increase the sensor sensitivity, the Pd:Cu ratio of the electroplated PdCu was varied to five different values and the condition of highest amperometric current at an identical of $H_2O_2$ concentration was chosen among them. The resulting amperometric current was highest when the ratio of Pd:Cu was 7:3 and this Pd;Cu ratio was employed in the sensor fabrication. The fabricated PdCu/LIG electrode based $H_2O_2$ sensor exhibited a sensitivity of $139.4{\mu}A/mM{\cdot}cm^2$, a broad linear range between 0 mM and 16 mM of $H_2O_2$ concentrations at applied potential of -0.15 V, and high reproducibility (RSD = 2.6%). The selectivity of the fabricated sensors was also evaluated by applying ascorbic acid, glucose, and lactose separately onto the sensor in order to see if the sensor ourput is affected by one of them and the sensor output was not affected. In conclusion, the proposed PdCu/LIG electrode based $H_2O_2$ sensor seems to be suitable $H_2O_2$ sensor in various applications.