• Title/Summary/Keyword: 그래프 기반 언어모델

Search Result 60, Processing Time 0.026 seconds

사용자 그래프 기반 한국어 가짜뉴스 판별 방법 (Korean Fake News Detection with User Graph)

  • 강명훈;서재형;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.97-102
    • /
    • 2021
  • 최근 급격한 정보기술의 발달로 가짜뉴스가 사회문제로 대두되고 있다. 한국어 가짜뉴스 문제를 딥러닝으로 해결하기 위해서 기존의 연구들은 본문 기반의 가짜뉴스 탐지를 진행하였으며 최근에는 기사 본문 외의 보조적 정보를 활용하는 방법으로 연구가 진행되고 있다. 그러나 기존의 방식과 개선된 방식들 모두 적절한 가짜뉴스 탐지 방법을 제시하지 못하여 모델이 산출한 가짜뉴스 표현 벡터의 품질을 보장할 수 없었다. 또한 한국어 가짜뉴스 문제를 해결함에 있어서 적절한 공개 데이터셋 또한 제공되지 않았다. 따라서 본 논문은 한국어 가짜뉴스 탐지 문제에서 독자 반응정보를 추가하여 효과적인 학습을 할 수 있는 '사용자 그래프 기반 한국어 가짜뉴스 판별 방법'과 해당 모델이 적절히 학습할 수 있는 간이 데이터셋 구축 방법을 제안한다.

  • PDF

기계독해 기반 한국어 의존 파싱 (Korean Dependency Parsing as Machine Reading Comprehension)

  • 민진우;나승훈;신종훈;김영길;김강일
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.270-273
    • /
    • 2021
  • 한국어 의존 파싱은 전이 기반 방식과 그래프 기반 방식의 두 갈래로 연구되어 왔고 그 중 그래프 기반 의존 파싱 방법은 문장 내의 모든 단어에 대해 인코딩한 후 지배소, 의존소에 대한 MLP를 적용하여 각각 표상을 얻고 Biaffine 어텐션을 통해 모든 단어 쌍에 대한 그래프 점수를 얻고 트리를 생성하는 방법이 대표적이다. Biaffine 어텐션 모델에서 문장 내의 각 단어들은 구문 트리 내의 서브트리의 역할을 하지만 두 단어간의 의존성만을 판단하기 때문에 서브 트리의 정보를 이용할 수 없다는 단점이 존재한다. 본 연구에서는 이러한 단점을 해결하기 위해 제안된 Span-Span(서브트리-서브트리)로의 서브트리 정보를 이용할 수 있도록 하는 기계 독해 기반 의존 파싱 모델을 한국어 구문 분석 데이터 셋에 적용하여 소폭의 성능향상을 얻었다.

  • PDF

Graph Neural Networks을 이용한 한국어 의존 구문 분석 (Graph Neural Networks for Korean Dependency Parsing)

  • 민진우;홍승연;이영훈;나승훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.537-539
    • /
    • 2019
  • 구문 분석은 문장의 구조를 분석하는 자연어처리 분야로 그래프 기반 방법과 전이 기반 방법으로 나뉘어 연구되어 왔다. 본 논문에서는 그래프 기반 방식에서 높은 성능을 보이고 있는 Deep Biaffine 어텐션 모델에 별도의 High-Order 정보 추출 없이 Graph Neural Network(GNNs)을 이용하여 High-Order 정보를 학습할 수 있도록 확장한 Deep Biaffine 어텐션 GNNs을 적용하여 한국어 세종 구문 분석 셋에서 UAS : 94.44%, LAS : 92.55%의 성능을 달성하였으며 Dual Decomposition을 통해 전이 기반 한국어 구문 분석 모델과 결합하여 추가적인 성능 향상을 보였다.

  • PDF

반복적 기법을 사용한 그래프 기반 단어 모호성 해소 (Graph-Based Word Sense Disambiguation Using Iterative Approach)

  • 강상우
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제13권2호
    • /
    • pp.102-110
    • /
    • 2017
  • 최근 자연어 처리 분야에서 단어의 모호성을 해소하기 위해서 다양한 기계 학습 방법이 적용되고 있다. 지도 학습에 사용되는 데이터는 정답을 부착하기 위해 많은 비용과 시간이 필요하므로 최근 연구들은 비지도 학습의 성능을 높이기 위한 노력을 지속적으로 시도하고 있다. 단어 모호성 해소(word sense disambiguation)를 위한 비지도 학습연구는 지식 기반(knowledge base)를 이용한 방법들이 주목받고 있다. 이 방법은 학습 데이터 없이 지식 기반의 정보을 이용하여 문장 내에서 모호성을 가지는 단어의 의미를 결정한다. 지식 기반을 이용한 방법에는 그래프 기반방식과 유사도 기반 방법이 대표적이다. 그래프 기반 방법은 모호성을 가지는 단어와 그 단어가 가지는 다양한 의미들의 집합 간의 모든 경로에 대한 의미 그래프를 구축한다는 장점이 있지만 불필요한 의미 경로가 추가되어 오류를 증가시킨다는 단점이 있다. 이러한 문제를 해결하기 위해 본 논문에서는 그래프 구축을 위해 불필요한 간선들을 배제하면서 반복적으로 그래프를 재구축하는 모델을 제안한다. 또한, 구축된 의미 그래프에서 더욱 정확한 의미를 예측하기 위해 하이브리드 유사도 예측 모델을 적용한다. 또한 제안된 모델은 다국어 어휘 의미망 사전인 BabelNet을 사용하기 때문에 특정 언어뿐만 아니라 다양한 언어에도 적용 가능하다.

핵심어 시퀀스와 지식 그래프를 이용한 RNN 기반 자연어 문장 생성 (RNN Based Natural Language Sentence Generation from a Knowledge Graph and Keyword Sequence)

  • 권성구;노윤석;최수정;박세영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.425-429
    • /
    • 2018
  • 지식 그래프는 많은 수의 개채와 이들 사이의 관계를 저장하고 있기 때문에 많은 연구에서 중요한 자원으로 활용된다. 최근에는 챗봇과 질의응답과 같은 연구에서 자연어 생성을 위한 연구에 활용되고 있다. 특히 자연어 생성에서 최근 발전 된 심층 신경망이 사용되고 있는데, 이러한 방식은 모델 학습을 위한 많은 양의 데이터가 필요하다. 즉, 심층신경망을 기반으로 지식 그래프에서 문장을 생성하기 위해서는 많은 트리플과 문장 쌍 데이터가 필요하지만 학습을 위해 사용하기엔 데이터가 부족하다는 문제가 있다. 따라서 본 논문에서는 데이터 부족 문제를 해결하기 위해 핵심어 시퀀스를 추출하여 학습하는 방법을 제안하고, 학습된 모델을 통해 트리플을 입력으로 하여 자연어 문장을 생성한다. 부족한 트리플과 문장 쌍 데이터를 대체하기 위해 핵심어 시퀀스를 추출하는 모듈을 사용해 핵심어 시퀀스와 문장 쌍 데이터를 생성하였고, 순환 신경망 기반의 인코더 - 디코더 모델을 사용해 자연어 문장을 생성하였다. 실험 결과, 핵심어 시퀀스와 문장 쌍 데이터를 이용해 학습된 모델을 이용해 트리플에서 자연어 문장 생성이 원활히 가능하며, 부족한 트리플과 문장 쌍 데이터를 대체하는데 효과적임을 밝혔다.

  • PDF

Second-Order TreeCRF를 이용한 한국어 의존 파싱 (Korean Dependency Parsing using Second-Order TreeCRF)

  • 민진우;나승훈;신종훈;김영길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.108-111
    • /
    • 2020
  • 한국어 의존 파싱은 전이 기반 방식과 그래프 기반 방식의 두 갈래로 연구되어 왔으며 현재 가장 높은 성능을 보이고 있는 그래프 기반 파서인 Biaffine 어텐션 모델은 입력 시퀀스를 다층의 LSTM을 통해 인코딩 한 후 각각 별도의 MLP를 적용하여 의존소와 지배소에 대한 표상을 얻고 이를 Biaffine 어텐션을 통해 모든 의존소에 대한 지배소의 점수를 얻는 모델이다. 위의 Biaffine 어텐션 모델은 별도의 High-Order 정보를 활용하지 않는 first-order 파싱 모델이며 학습과정에서 어떠한 트리 관련 손실을 얻지 않는다. 본 연구에서는 같은 부모를 공유하는 형제 노드에 대한 점수를 모델링하고 정답 트리에 대한 조건부 확률을 모델링 하는 Second-Order TreeCRF 모델을 한국어 의존 파싱에 적용하여 실험 결과를 보인다.

  • PDF

비디오 스크립트를 이용한 문법적 패턴 습득 모델링 (Modelling Grammatical Pattern Acquisition using Video Scripts)

  • 석호식;장병탁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2010년도 제22회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.127-129
    • /
    • 2010
  • 본 논문에서는 다양한 코퍼스를 통해 언어를 학습하는 과정을 모델링하여 무감독학습(Unsupervised learning)으로 문법적 패턴을 습득하는 방법론을 소개한다. 제안 방법에서는 적은 수의 특성 조합으로 잠재적 패턴의 부분만을 표현한 후 표현된 규칙을 조합하여 유의미한 문법적 패턴을 탐색한다. 본 논문에서 제안한 방법은 베이지만 추론(Bayesian Inference)과 MCMC (Markov Chain Mote Carlo) 샘플링에 기반하여 특성 조합을 유의미한 문법적 패턴으로 정제하는 방법으로, 랜덤하이퍼그래프(Random Hypergraph) 모델을 이용하여 많은 수의 하이퍼에지를 생성한 후 생성된 하이퍼에지의 가중치를 조정하여 유의미한 문법적 패턴을 탈색하는 방법론이다. 우리는 본 논문에서 유아용 비디오의 스크립트를 이용하여 다양한 유아용 비디오 스크립트에서 문법적 패턴을 습득하는 방법론을 소개한다.

  • PDF

LLM 사용자의 민감정보 유출 방지를 위한 지식그래프 기반 챗봇 (A Knowledge Graph-based Chatbot to Prevent the Leakage of LLM User's Sensitive Information)

  • 유기동
    • 지식경영연구
    • /
    • 제25권2호
    • /
    • pp.1-18
    • /
    • 2024
  • 거대언어모델(LLM)에 대한 수요와 활용 사례가 증가함에 따라 사용자의 민감정보가 LLM 사용 과정 중에 입력 및 유출되는 위험성 또한 증가하고 있다. 일반적으로 LLM 환각 문제의 해결을 위한 도구로 알려진 지식그래프는, LLM과는 별개로 구축되어 사용자의 민감정보를 별도로 보관 및 관리할 수 있으므로, 민감정보의 유출 가능성을 최소화하는 하나의 방법이 될 수 있다. 따라서 본 연구는 사용자로부터 입력된 자연어 기반의 질문을 LLM을 통해 지식그래프 유형에 맞는 쿼리문으로 변환하고 이를 이용하여 쿼리 실행과 결과 추출을 진행하는 지식그래프 기반 챗봇을 제시한다. 또한 본 연구에서 개발된 지식그래프 기반 챗봇의 기능적 유효성 판단을 위하여, 기존 지식그래프에 대한 이해도와 적응력, 새로운 개체 클라스 생성 능력, 그리고 지식그래프 콘텐츠에 대한 LLM의 접근 가능성 여부를 판단하는 성능 테스트를 수행한다.

핵심질의 클러스터를 이용한 어휘 그래프 기반 질의 확장 (Query Expansion Based on Word Graph Using Core Query Clusters)

  • 조승현;장계훈;이경순
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.430-432
    • /
    • 2011
  • 본 논문에서는 질의 조합을 기반한 핵심질의 클러스터와 비핵심질의 클러스터를 각각 어휘 그래프로 표현한다. 이 때, 핵심질의 클러스터는 잠정적 적합 문서 집합으로, 비핵심질의 클러스터는 잠정적 부적합 문서 집합으로 본다. 핵심질의 클러스터의 어휘 그래프에서 비핵심질의 클러스터의 어휘 그래프를 빼서 확장어휘를 선택한다. 본 논문의 유효성을 검증하기 위해 웹문서 테스트컬렉션인 TREC WT10g 에 대해 실험하였고, 언어모델보다 평균정확률의 평균(MAP)이 9.4% 향상되었다.

그래프 신경망과 멀티 모달 맥락 정보를 이용한 장면 그래프 생성 (Scene Graph Generation with Graph Neural Network and Multimodal Context)

  • 정가영;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.555-558
    • /
    • 2020
  • 본 논문에서는 입력 영상에 담긴 다양한 물체들과 그들 간의 관계를 효과적으로 탐지하여, 하나의 장면 그래프로 표현해내는 새로운 심층 신경망 모델을 제안한다. 제안 모델에서는 물체와 관계의 효과적인 탐지를 위해, 합성 곱 신경망 기반의 시각 맥락 특징들뿐만 아니라 언어 맥락 특징들을 포함하는 다양한 멀티 모달 맥락 정보들을 활용한다. 또한, 제안 모델에서는 관계를 맺는 두 물체 간의 상호 의존성이 그래프 노드 특징값들에 충분히 반영되도록, 그래프 신경망을 이용해 맥락 정보를 임베딩한다. 본 논문에서는 Visual Genome 벤치마크 데이터 집합을 이용한 비교 실험들을 통해, 제안 모델의 효과와 성능을 입증한다.