• 제목/요약/키워드: 그래프 구조 데이터

검색결과 185건 처리시간 0.036초

그래프데이터베이스 기반 통신망 운영관리 방안 (Network Operation Support System on Graph Database)

  • 정성재;최미영;이화식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.22-24
    • /
    • 2022
  • 최근 그래프데이터베이스가 널리 사용되기 시작했다. 그래프데이터베이스는 그래프구조를 활용하는 데이터베이스이다. 관계형 데이터베이스의 테이블 대신, 그래프데이터베이스는 정점과 간선 형태로 정보를 저장한다. 데이터 저장구조의 사전 정의 없이 데이터를 저장할 수 있으며 사람이 생각하는 방식과 유사하게 데이터를 저장하고 조회할 수 있다. 그래프 데이터베이스를 활용하면 복잡한 연결구조를 가진 대용량 데이터를 효율적으로 처리할 수 있다. 통신망은 다양한 형태의 통신설비가 복잡하게 상호연결된 그래프구조로 볼 수 있다. 기존의 통신망 관리 시스템(Network Operation Support System)은 통신설비와 설비간 연결관계를 관계형데이터베이스로 관리하고 있어 서비스 종단 간 연결관계를 조회하거나, 고장원인 지점을 추적 ·조회하는등 그래프 탐색쿼리를 수행함에 있어서 어려움이 있었다. 본 연구에서는 통신망 구성 정보를 그래프데이터베이스를 이용해 구축하는 방안에 대해 고찰하고자 한다. 그래프데이터베이스의 도입으로 그래프탐색이 필요한 조회인 경우 효율적인 질의처리가 가능할 것으로 기대한다.

  • PDF

그래프 가시화 기술 조사 (Survey on Graph Visualization Techniques)

  • 전효림;이정훈;한욱신
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.304-305
    • /
    • 2018
  • 그래프는 실세계의 객체와 정보를 표현하는 데이터구조로서 널리 사용되고 있다. 최근 들어 그래프 데이터의 활용도가 높아지고 다루는 그래프의 크기가 조 단위 규모로 증가함에 따라, 그래프 데이터에 관한 효과적인 가시화 기술에 대한 연구의 중요성도 증가하고 있다. 본 논문에서는 향후 그래프 가시화 툴 개발에 활용할 목적으로 그래프 데이터의 가시화를 위해 사용되는 기술을 조사하고 정리하였다.

그래프 구조 정보를 이용한 효율적인 그래프 메디안 탐색 기법 (An Efficient Technique using Graph Topology Information for Finding Graph Median)

  • 박기성;윤영선;김태연;이영구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.1193-1195
    • /
    • 2013
  • 최근 정보 기술의 발달로 XML, 화학 복합물, 소셜 네트워크 등과 같은 구조적 정보를 갖는 빅 데이터들이 대량으로 축적되고 있다. 이러한 구조적 정보를 갖는 그래프 데이터에서 메디안을 찾기 위한 연구가 진행되고 있다. 기존에는 그래프 메디안을 효율적으로 계산하기 위해 하한값을 이용한 그래프 메디안 탐색 기법이 제안되었다. 그러나 탐색을 시작하는 버텍스를 선정하는 데에 따라 가지치기 효과가 다르게 발생하는 문제점이 있다. 본 논문에서는 버텍스의 그래프 구조 정보를 이용한 효율적인 메디안 탐색 기법을 제안한다. 제안하는 탐색 기법은 버텍스의 차수와 에지 가중치를 이용하여 그래프 메디안 예측 값을 정의하고, 그래프 메디안과 유사한 버텍스들부터 우선적으로 탐색한다. 실험을 통하여 제안하는 기법이 기존의 방법보다 최대 10%까지 수행시간을 단축함을 보인다.

공간적 그래프 임베딩을 활용한 그래프 암시적 신경 표현 (Graph Implicit Neural Representations Using Spatial Graph Embeddings)

  • 박진호;김동우
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.23-26
    • /
    • 2024
  • 본 논문에서는 그래프 구조의 데이터에서 각 노드의 신호를 예측하는 연구를 진행하였다. 이를 위해 분석하고자 하는 그래프에 대해 연결 관계를 기반으로 각 노드에 비-유클리드 공간 상에서의 좌표를 부여하여 그래프의 공간적 임베딩을 얻은 뒤, 각 노드의 공간적 임베딩을 입력으로 받고 해당 노드의 신호를 예측하는 그래프 암시적 신경 표현 모델을 제안 하였다. 제안된 모델의 검증을 위해 네트워크형 데이터와 3차원 메시 데이터 두 종류의 그래프 데이터에 대하여 신호 학습, 신호 예측 및 메시 데이터의 초해상도 과정 실험들을 진행하였다. 전반적으로 기존의 그래프 암시적 신경 표현 모델과 비교하였을 때 비슷하거나 더 우수한 성능을 보였으며, 특히 네트워크형 그래프 데이터 신호 예측 실험에서 큰 성능 향상을 보였다.

  • PDF

그래프 구조를 갖는 서지 빅데이터의 효율적인 온라인 탐색 및 분석을 지원하는 그래픽 인터페이스 개발 (Developing Graphic Interface for Efficient Online Searching and Analysis of Graph-Structured Bibliographic Big Data)

  • 유영석;박범준;조선화;이수안;김진호
    • 한국빅데이터학회지
    • /
    • 제5권1호
    • /
    • pp.77-88
    • /
    • 2020
  • 최근 다양한 실세계의 복잡한 관계를 그래프의 형태로 구성하고 분석하는 다양한 연구들이 진행되고 있다. 특히 DBLP와 같은 컴퓨터 분야 문헌 데이터 시스템은 논문의 저자, 그리고 논문과 논문들이 서로 인용 관계로 표현되는 대표적인 그래프 데이터이다. 그래프 데이터는 저장 구조 및 표현이 매우 복잡하므로, 문헌 빅데이터의 검색과 분석, 그리고 시각화는 매우 어려운 작업이다. 본 논문에서는 문헌 빅데이터를 그래프의 형태로 시각화한 그래픽 사용자 인터페이스 도구, 즉 EEUM을 개발하였다. EEUM은 그래프 데이터를 시각적으로 표시하여 연결된 그래프 구조에 따라 문헌 데이터를 브라우징 하는 기능을 제공하며, 문헌 빅데이터에 대한 검색 및 관리, 분석이 가능하도록 구현하였다. 또한 EEUM을 DBLP가 제공하는 문헌 그래프 빅데이터에 적용하여 편리하게 검색, 탐색 및 분석하는 할 수 있음을 시연한다. EEUM을 이용하여 모든 연구 분야에서 영향력 있는 저자나 논문을 쉽게 찾을 수 있으며, 여러 저자와 논문 사이의 모든 관계를 한 눈에 볼 수 있는 등 복잡한 문헌 그래프 빅데이터의 검색 및 분석 도구로 편리하게 사용할 수 있다.

구조적 차이를 고려한 서브 그래프 매칭을 위한 요약 색인 기법 (Summary Indexing Scheme for Subgraph Matching Considering Structural Differences)

  • 최도진;복경수;유재수
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2019년도 춘계종합학술대회
    • /
    • pp.447-448
    • /
    • 2019
  • 생명 공학 분야에서는 노이즈가 많고 불완전한 데이터 집합의 사용이 많이 이루어진다. 불완전한 그래프에서 구조적 차이를 고려한 근사 서브 그래프 매칭에 대한 활용이 이루어지고 있다. 본 논문에서는 기존 기법에서 모든 데이터 및 경우의 수를 색인하는 과도한 색인 문제와 계산 비용 감소를 위한 요약 색인 기법을 제안한다. 구조적 차이 정보를 저장하기 위해서 특정 정점간의 최단 거리 값을 관리하고, 색인 부하 감소 및 일관성을 위해 요약 색인에 대한 간결화 작업을 수행한다.

  • PDF

하이퍼그래프 희소성에 따른 하이퍼그래프 임베딩 방법 성능 평가 (Evaluating the Performance of Hypergraph Embedding Methods According to Hypergraph Sparsity)

  • 정소빈;강윤석;김상욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.641-643
    • /
    • 2024
  • 실세계에서는 두개 이상의 객체들이 서로 관계를 맺고있다. 단 두 객체 간의 관계만 표현하는 그래프와는 달리 여러 객체들 간의 관계를 표현하는 하이퍼그래프는 그룹 상호작용을 잘 표현할 수 있다. 이러한 강점으로 하이퍼그래프를 활용한 응용들이 많이 제안되고 있다. 하이퍼그래프 임베딩은 하이퍼그래프의 구조를 이용하여 노드를 저차원 벡터로 표현하는 방법이다. 이렇게 표현된 벡터들은 노드 분류, 커뮤니티 탐지, 링크예측 등 광범위한 응용에 활용된다. 하지만 하이퍼그래프는 그래프보다 희소성 문제가 훨씬 더 심해 데이터 셋의 희소성이 하이퍼그래프 임베딩 방법의 성능에 큰 영향을 미칠 수 있다. 따라서, 본 논문에서는 희소성에 따른 하이퍼그래프 임베딩 방법들의 성능을 분석하고자 한다. 우리는 8 개의 실세계 데이터셋을 이용한 실험을 통해 데이터가 희소할수록 하이퍼그래프 임베딩 방법들의 성능이 감소하는 것을 확인하였다.

딥러닝 기술을 적용한 그래프 알고리즘 성능 연구 (Research on Performance of Graph Algorithm using Deep Learning Technology)

  • 노기섭
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.471-476
    • /
    • 2024
  • 다양한 스마트 기기 및 컴퓨팅 디바이스의 보급에 따라 빅데이터 생성이 광범위하게 일어나고 있다. 기계학습은 데이터의 패턴을 학습하여 추론을 수행하는 알고리즘이다. 다양한 기계학습 알고리즘 중에서 주목을 받는 알고리즘은 신경망 기반의 딥러닝 학습이다. 딥러닝은 다양한 응용이 발표되면서 빠른 성능 향상을 달성하고 있다. 최근 딥러닝 알고리즘 중에서 그래프 구조를 활용하여 데이터를 분석하려는 시도가 증가하고 있다. 본 연구에서는 그래프 구조를 활용하여 딥러닝 네트워크에 전달하기 위한 그래프 생성 방법을 제시한다. 본 논문은 그래프 생성 과정에서 노드의 속성과 간선의 가중치를 일반화하고 행렬화 과정을 제시하여 딥러닝 입력에 필요한 구조로 전환하는 방법을 제시한다. 그래프 생성 과정에서 속성과 가중치 정보를 보전할 수 있는 선형변환 매트릭스 적용 방법을 제시한다. 마지막으로 일반 그래프의 딥러닝 입력 구조를 제시하고 성능 분석을 위한 접근법을 제시한다.

RDF/S 및 OWL 문서에 대한 키워드 검색 알고리즘 (A New Keyword Search Algorithm for RDF/S and OWL Documents)

  • 김학수;손진현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.321-324
    • /
    • 2009
  • XML 또는 RDBMS 에서의 키워드 검색은 기존의 정보 검색처럼 데이터의 구조 또는 질의 언어에 대한 사전 지식 없이 질의 처리를 수행하는 연구 분야 중의 하나이다. 오늘날 키워드 검색을 효율적으로 처리하기 위해 제안된 연구들은 그래프 기반의 질의 처리에 기반한 기법들에 초점을 두고 있다. 이러한 접근들은 XML 또는 RDBMS 안에 존재하는 데이터를 그래프 구조에 기반한 데이터로 변환한 다음에 그래프 탐색을 통해서 모든 질의 키워드를 포함하는 결과들을 찾는다. 그러나 기존의 기법들을 RDF/S 또는 OWL 문서와 같은 복잡한 그래프 구조에 적용하기에는 질의 성능 측면에서 많은 문제점을 가지고 있다. 또한, 온톨로지 언어의 의미적 단위로서의 RDF 트리플을 고려하지 않기 때문에 질의 결과에 대한 신뢰성을 보장할 수 없다. 이러한 관점에서 본 논문은 RDF/S 또는 OWL 저장소에서 효율적이고 의미적인 키워드 검색을 위한 인덱싱 기법 및 알고리즘을 설계한다.

구조적 특징에 기반한 대사 경로 드로잉 알고리즘의 설계 및 구현 (Design and Implementation of a Metabolic Pathway Drawing Algorithm based on Structural Characteristics)

  • 이소희;송은하;이상호;박현석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.325-327
    • /
    • 2004
  • '생물정보학'이란 생물학적 데이터를 처리, 가공하여 정보를 얻어내는 연구 분야로 이 중 대사체학은 대사 경로 네트워크를 가시화하여 생명 활동을 이해하고자 하는 분야로, 대사 경로 내의 흐름을 한 눈에 알 수 있도록 가시화하여 보여 주는 도구가 반드시 필요하다 따라서 본 논문에서는 새로운 '대사 경로 드로잉 알고리즘'을 제안하였다. 대사 경로 그래프의 구조로는 이분 그래프를 이용하여 가독성을 높였으며. 이 그래프가 척도 없는(scale-free) 네트워크 구조라는 것과 구조적으로 환형, 계층적 선형 컴포넌트를 가진다는 것을 고려하여 사이즈가 큰 그래프도 적절하게 드로잉 하도록 하였다.

  • PDF